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This is the outcome of a real-time travel through the beautiful
landscape of logic revealed in the morphology of informatics. A group
of researchers of Department of Information Technology of IIEST,
Shibpur and their teachers took a journey along with one Professor
of logic who had experienced this walk several times before. But the
togetherness, unhindered exchanges and spirit of the wanderers gave
rise to something that exceeded most anticipations. Especially with
the assembly of young hearts down the line, the acquired intensity
and resonance of shades of colour in the joy of creation increased
manifold. And the notation of that symphony is presented here.



Foreword

When Dr. Sukanta Das approached me to deliver some lectures on logic to his Ph.D students
and himself I readily agreed. This was because first, I love talking on logic and second, the
audience consisted of matured minds who do research in a different (but not totally detached)
field. I wanted to undergo a process different from what I had been doing for long years in
my standard logic classes in mathematics departments. So, my only condition to Sukanta and
his students was that they should interact. And they did so for which I very much enjoyed
the classes. Evidences of interaction may be marked in repetition, non-linear arrangement of
the topics, incompleteness (claims without justification since not all our discussions could be
noted), lack in rigour, mis(ill)construction of sentences, different languages at different places
(because notes were prepared by different persons), even some mistakes. When the manuscript
was handed over to me I prepared to make changes as little as possible. After all, this was not
intended to be a book, it was an account of our wonderful academic journey together. This
is an outcome of our joint deliberation. To novices, delight of this journey might perhaps be
shared. To experts even, the strange arrangement of the topics and passage from one topic to
another might reveal some natural flow of queries that they usually do not encounter or can
not entertain. My thanks to Sukanta, his students, Subhasis (Banerjee) and Mallika (Sarbad-
hikari) for offering me this opportunity.

Prof. Mihir Kumar Chakraborty
Visiting Professor
Department of Humanities and Social Sciences
Indian Institute of Engineering Sciences and Technology, Shibpur
West Bengal, India – 711103
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Preface

It was a hot summer in Kolkata when we met Professor Mihir K Chakraborty in a small class
room of IT department for the first time. The room was not so hot; but the irritative weather
was pinching all of us. And Professor Chakraborty started to talk on Logic! We didn’t imagine
at the first meet that what an enchanting journey we had already started! And the journey
lasted for more than one year. This lecture note is a rough account of that exciting journey.

We were six regular participants in this lecture series – me and five of my PhD students:
Kamalika, Raju, Souvik, Sumit and Supreeti. Sometime Professor Subhasis Bandopadhyay of
HSS department of this Institute, Dr. Biswanath Sethi, my former student and a faculty mem-
ber of Indira Gandhi Institute of Technology, Sarang, Odisha, and Dr. Subhasis Chakraborty,
a physician by profession joined us in the lecture. We six are the learners and artisans of
computing science, and work particularly in the domain of cellular automata. So we were
very much interested to learn Mathematical Logic along with its philosophical aspects from a
mathematician who is not only a true Master in this domain but also a pioneer researcher of
the area. Some topics of Mathematical Logic are generally covered in the courses of Computer
Science and Information Technology. So we also wanted to re-look at the subject through the
eyes of a mathematician. Professor Mihir Kumar Chakraborty (MKC) is not a mathematician
only; he is a philosopher, and a dreamer. And we got a reflection of this side of his persona
throughout the journey. When MKC started to talk, we immediately realized that it was not
going to be a traditional class on Logic. He frequently referred to the philosophical debates
and brought various philosophical ideas in his lectures. He insisted us to make the journey
interactive and collaborative so that we could feel that we all were players in the game! There
was no known flow in the lecture – a spontaneity overwhelmed the journey which touched
different sectors of Logic in its own rhythm. We interacted; we debated, and got motivation
to cope up with new ideas and research challenges. Yes, the journey was a joint venture, but
the leadership of a beautiful mathematician enabled us to discover so many shades of Logic!

Let us take a brief look at the journey. At the beginning, it was appealed to the audience
that what they intuitively understand by “Logic”. From this intuitive understanding, what we
can expect from Mathematics of Logic was discussed. We were introduced first the semantic
definition of Logic. Material implication, symbolized by −→, is a point of debate in Philo-
sophical Logic since long. The debate was cherished by us and decided that we would arrange
a survey to know what people in general think about implication. And, we got strange results!
Even the professors didn’t agree to the traditional understanding of implication! However, we
next moved to the syntactic definition of logic. And these two definitions led us to soundness
and completeness theorems of Logic. We started with Propositional Logic, then visited to the
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First Order Logic. In the midway, we took a quick look at the Modal Propositional Logic. We
would come back to the Modal Logic again at the end where System K, System T etc. would
be discussed. However, the most exciting part of the journey might be the visits to Number
Theory and Gödel’s Incompleteness Theorem. Many stories and mysteries about Gödel were
nurtured in the class. Few years back, MKC wrote a book in Bengali on Gödel, from where he
shared his views on Gödel’s works. It is, however, always exciting to re-look at the mathemat-
ical theories through the eyes of First Order Logic and Set Theory. MKC argued that First
Order Logic is sufficient in mathematics, and there is no need to go for higher order Logic!

After that, the journey moved beyond the classical (Two-valued) logic. At its first ap-
pearance, the Three-Valued Propositional Logic was discussed. And then we peeked into the
multi-valued logic. This new areas of Logic, also known as Non Standard Logic which is the
domain of MKC’s research, had frequently come in his lectures. For example, Paraconsistent
Logic, Sequent Calculus etc. had been referred in the journey as outcomes of limitations of
classical logics. Finally, we visited the Fuzzy Logic.

The lecture series was started on the mid of July of 2016, and continued until the March
of 2018. After the start of the journey, however, we decided to develop a lecture note which
will be shared among the interested people. My five students divided the job among them,
prepared the notes which were then shown to MKC for his approval. He always wanted to
keep our understanding intact in the writings, keeping aside his own views. We do not know
how much justice we were able to do to this incredible journey, but we tried to give a feel of
this (non standard) journey to the readers. We placed the topics in this note as it happened
in the class room. And this has made it different from any other standard books or class notes
on Logic.

We are very thankful to Department of Humanities and Social Sciences (HSS) for sponsoring
Professor Mihir Kumar Chakraborty as Visiting Professor during that period. We announced
in Indian School of Logic and Applications ISLA (Part II), held in this Institute on December,
2018, that we would publish this class note on Web, which is finally going to happen. I
personally am delighted. I am thankful to my students who prepared this notes with patience.
I have no words to express my gratitude to Professor Chakraborty, and I shall surely not try
to do that. I consider myself as a happy student of him, and want to further continue this
journey with him. If anybody gets any benefit from this lecture, we shall consider that our
effort has been successful. I am sure that Sir will also feel the same.

Sukanta Das
Associate Professor
Department of Information Technology
Indian Institute of Engineering Sciences and Technology, Shibpur
West Bengal, India – 711103
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Chapter 1

Introduction to Logic
Class 1: Dated 15 - July - 2016

What do we understand by logic? An intuitive answer may be, “that follows
an inbuilt reason and comes to a conclusion”. However, in general, any subject
deals with two basic philosophical questions: What? and How?. The domain
of knowledge that deals with the question “what?” is called Ontology and the
same for the question “how?” is called Epistemology. So, in the above question,
we are mainly concerned about ontology of Logic.

Facts
Sentences
about
Facts

Figure 1.1: Relation between Facts and Sentences

• True/ False: This can be said of the sentences about facts. e.g. - ‘Snow is
white’ is true. Similarly, ‘4 is prime’ is false.

Right now, we will consider only the type of logic that admits values either
true or false. So, comes the question which entities have the value true/false?
The facts or the sentences? Actually, ‘facts’ and ‘the sentences about facts’ are
two different sets (see Fig.1.1). True/False can be ascribed only to the linguistic
description of the facts, because these are associated with sentences about facts,
not facts themselves. If a sentence properly describes the fact, the value is ‘True’.
True/False are properties of sentences.

Theory of Truth/ Philosophy of Truth/Correspondence Theory of Truth
[A. Tarski]
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The sentence “Snow is white′′

Sentence
is true if and only if snow is white

Fact
.

Sentences are linguistic descriptions belonging to some language(s) and relate
to some fact(s). But, how can we assign a truth value to a sentence? It can
be done by verification. For example, for the sentence “Snow is white”, one can
verify the color of snow as white. Take another sentence “ 4 is prime”; here, the
verification can be done by computation. Note that, the method of verification
is not mentioned in the correspondence theory of truth. It is the question ‘How’,
that is, part of Epistemology.

Above two examples are atomic or rudimentary sentences. However, determi-
nation of truth/falsehood of such atomic sentences is not a part/task of logic.
Logic deals with sentence(s) made of more than one atomic sentence, e.g. not p,
p or q, p and q ,if p then q.

Sentences are to mean a fact, which is connected to an Ontology. However,
there can be two other outcomes of sentences with respect to truth:

• Neither: This happens, for example, for future contingent statements, first
mentioned by Aristotle. Note that, ‘neither’ is the case, when we see it in
terms of Epistemology. In terms of Ontology, there is either true/false. If
one can foresee, she can write the value. An example is “Tomorrow there
shall be rain”. This statement can be neither true nor false now, as it is
going to happen tomorrow, i.e., can’t be determined in the present time.

• Both: The value of a statement can be both true and false, e.g.- ‘A’ is
a terrorist. This gets the truth value depending on the circumstances /
analogies /context.

Now, two questions readily come out - (i) Are facts related to atomic sentences?
(ii) What is the fact related with a complex non-atomic sentence? These can be
answered by an example.

Example 1 “Man is mortal”

Here, the fact is every man is mortal. But, “man” is not an entity, it is a set or
collective that we build for our purpose. In the given sentence, we are creating
facts for our own purposes to draw a conclusion, which is, all men are mortal.
Note that, the property ‘mortal’ is contained in ‘Man’, however, set theoretically,
the thing is opposite. The set ‘man’ is contained in the set ‘mortal’.
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1.1 Distributive and Non-distributive Plurals

In some sentences, a property applied over the plural form of an entity can
be applied to its singular form also keeping the same meaning, that is, the
relationship is the same for both the singular and plural forms. Such forms are
termed as distributive plurals. However, in some sentences, this is not true; and
the form is called non-distributive plural. The name “distributive” comes from
the fact that, here the form predicate distributes over individual entities.

Example 2 “Men are mortal” if and only if “Every man is mortal”. Here, the
meaning is implied. So, it is an example of distributive plural.

However, the sentence “Students offered a bouquet to their teacher”, does
not imply that each individual student has offered a bouquet. So, it is non-
distributive.

Set theory is non-distributive. What is associated with a set, may not be
associated with each of its elements.

Example 3 Take two sets {2, 3, 4} and {1, 2, 3, 4}. Here, {2, 3, 4} ⊆ {1, 2, 3, 4}.
However, 2 * {1, 2, 3, 4}, 3 * {1, 2, 3, 4} and 4 * {1, 2, 3, 4}. So, “is a subset of”
is non-distributive to the elements of the set.

1.2 Connectives

∧ (AND), ∨ (OR), ¬ (NOT), → (IF · · · THEN) are called logical connectives
that give rise to complex sentences out of simpler sentences. Here X is a set
of sentences and α is one sentence. The sign ` denotes a relationship between
them, termed as “follow(s)”. For example, let X be a set of the following two
sentences:

1. 2 is prime.

2. If 2 is prime, then 3 is odd.

and α is the sentence “4 is even”. Now, the problem is whether α follows from
X or not. That is, whether “4 is even” follows from the two sentences, namely
‘2 is prime’ and ‘If 2 is prime, then 3 is odd’ of X. Incidentally, all the three
sentences are true, yet we shall see that, the sentence α does not logically follow
from the sentences 1 and 2.
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Task for the reader: Find statistics about public view on whether α
follows from these two sentences.

How is the relationship ‘Follows’ understood in Logic? Actually, the purpose
of logic is to precisify (understand) the natural language word ‘Follow ’. We
can intuitively understand the meaning of ‘Follow’. But, how can we define
(precisify) the term ‘Follow’ in logic?

In logic, the set of sentences, X is called the premises and α is the conclu-
sion. The relationship follow(s) is termed as consequence and is denoted by `
(turnstile) (see Fig. 1.2).

αX

Follow(s)

turnstile

...

(premises)

(conclusion)

Figure 1.2: Premise Conclusion Relation

Note that, in the above example, while 1 and α are atomic sentences, 2 is
non-atomic.

1.2.1 Definition of turnstile (`)

Definition 1 X ` α holds if and only if, for all situations, whenever all the
members of X are ‘true’, α is also ‘true’.

X is called the premise and α is called the conclusion.

If we know the truth values of the (atomic) sentences, then the truth values of
the premise and the conclusion can be derived. One mode of obtaining the truth
values is by using a truth-table. It is the specification or rule given by logic. For
example, if the truth values of p ∧ q, p ∨ q, ¬p and p → q are to be found, we
can construct the following truth-table of Table 1.1.

However, that set of statements X entails a statement α, does not mean that
each statement in the premise entails α. For example, in Fig. 1.3, if in any
situation, the statements of X are true, then for that situation, the conclusion q
is also true. Thus the conclusion q ‘follows’ from X. However, ‘X entails α’ does
not mean each member of X entails α. This is similar to the non-distributive
plurals. The rule of logic, shown in Fig. 1.3, is called modus ponens.

In the following example of Fig. 1.4, an extra premise r is added to X, which
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Table 1.1: Example of Logic using Truth-table

p and q p or q not p if p then q

p q p ∧ q p ∨ q ¬p p→ q

True True True True False True
True False False True False False
False True False True True True
False False False False True True

X

q
p

p→ q
[modus ponens]

Figure 1.3: Modus ponens

is not used for arriving at the conclusion. However, for the relationship ‘follows’
to hold, we need to consider the situations where r is true as well as p and p→ q

are true’; that is, the situations with ‘r false’ and ‘p & p → q true’ will not
be counted. Note that, increase in premise means smaller class of situations to
hold; ‘r false’ and ‘p & p→ q true’ will not be a situation to consider.

X

qp
p→ q

r

Figure 1.4: Another example of logic

1.2.2 Properties of turnstile (`)

For a ` (turnstile) to be defined, the following three properties must be satisfied.

1. If α ∈ X then X ` α. [Reflexivity/Overlap]

2. If X ` α then Y ` α, when X ⊆ Y . [Monotonicity/Dilution]

3. If X ` β ∈ Y, forall β, and Y ` α, then X ` α. [Cut/General transitivity]

One can see that ` defined as in Def 1 satisfies the above three conditions.
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The following figures Fig. 1.5a, Fig. 1.5b and Fig. 1.5c depict the situations
for the three properties respectively. Note that, the example of Fig. 1.4 holds
because of monotonicity/dilution property.

X

αα
...

· · ·

`

(a) Reflexivity or overlap
property of turnstile(`)

X
Y

α`

`

(b) Monotonicity or dilution
property of turnstile(`)

X
Y

α

β1
β2

...

`

`

`

(c) Cut or general transitivity property of
turnstile(`)

Figure 1.5: Properties of turnstile(`)

Now, we can formally define logic in the following section.

1.3 Logic

To define logic, we need sentences. Let us consider L to be the set of all possible
sentences. This L is called the language. Language can be natural, such as En-
glish, Bengali etc., or formal. For the purpose of Logic, we use formal language.
We shall formally define formal language in next chapter.

Logic can be formally defined by a pair (L,`). So, logic is a language and
turnstile relation, where ` satisfies properties (1), (2) and (3). In a logic, the
left hand side of the relation ` represents a set of sentences of the language and
right hand side represents a sentence of the language.

Here, X ⊆ L, α ∈ L and ` is a consequence relation.

Mathematically, turnstile (`) is a binary relation from power set of L to L.
That is, `: P(L)) to L. Anyway, if we consider the same L and change the `
relation, we get a new logic. Now the question is, how many logics can we get
for a given L?
Since L is a set of all possible sentences, L is taken to be an infinite set. But

this set is countable. However, P(L) is an uncountable set. Hence, the number
of possible turnstile relations is uncountably many. So, we can get uncountably
many logics against a given L.
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1.4 Some points to be noted

• The purpose or task of logic is to study the turnstile/follow(s) relation, not
finding the truth value of the (atomic) sentences.

• In case of logical OR (∨) operation, there is a situation where both the
operands are true. But, this situation usually does not come in practical
cases. For example, the answer to the question “Tea or coffee” is either ‘Tea’
or ‘Coffee’, so either one is ‘true’, not both. Such situations are examples
of Exclusive OR operation.

• There are different modes of computing truth values.

• Object and Property are two disjoint notions.

• An atomic Fact is an object with a property.

• Plurals is a new and on-going domain of research.

• Mathematics for distributive plurals is still an open issue.



Chapter 2

Propositional Logic: Semantic
Definition
Class 2: Dated 22 - July - 2016

According to Chapter 1 logic has been defined by a pair (L,`), where L is the
Language and ` is the consequence relation or the inference engine. ‘`’ follows
Overlap, Monotonicity and Cut properties.

Notion of truth:
Notion of truth shows how to know whether X ` α holds or not. For that, the
correspondence theory is also required.

Correspondence theory:
Whether a statement is true or false is decided by correspondence with reality.
For example, “Snow is white” is true if and only if snow is white. (Tarski)

However, we need to define a language in more concrete terms.

2.1 Formal Language

Formal language can be defined informally as

• Basic set of symbols (i.e. Alphabet).

• Sentences by arranging alphabet or we can say, strings of symbols taken
from the alphabet.

Example 4 As an example, “I go home”. Now consider the gaps in the sentence.
There are gaps between characters as well as words, but here we shall consider
the gaps between words and use a symbol for the gaps. Let the symbol be #.
Therefore, the sentence becomes “I#go#home”: string of symbols (with gap #)
taken from the alphabet. We shall keep a count for the length of the string.

8
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The length of the string “I#go#home” is 9, because we have 9 occurrences of
symbols involved in it. To make such sentences, some rules are to be followed
which are collectively said to be “grammar”.

Definition 2 A formal language is a set of string of symbols taken from alpha-
bet, A i.e. a language L ⊆ A∗, A∗ is a set of all strings over A. In order to form
a language, it is not essential for A to be finite.

Example 5 As an example, see Figure 2.1

Alphabet

A

Figure 2.1: Set of alphabet

Formation rules:
Now, we can set the rules for the language L where A = {M,�}.

i) Any string is finite.

ii) A string is acceptable if and only if it starts with M and ends with two
successive �’s.

Example 6 Then, we can say M �� is accepted (M �� ∈ L) and M � M is not
accepted (M � M6∈ L).
Once the alphabet is specified and rules are specified, then it is decidable

whether a string is a part of language or not. For technical reasons we shall also
consider empty string as a string which will be denoted by Λ. Empty string is
not ‘blank’ or ‘#’.

2.2 Propositional logic

Definition 3 (L,`) where L is the language. The alphabet A of L is given by,
A = {p, |,¬,→, (, )}, where the formation rules to arrange the alphabet are:

1. Any p followed by a finite number of | marks is in L.
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2. If α is in L then (¬α) is in L.

3. If α, β are in L then (α→ β) is in L.

4. Nothing else is in L.

Note that such a definition is known as recursive definition.

Example 7 According to rule (1), p|, p||, p|||, · · · , these are atomic well formed
formula (wffs). These represent actual simple sentences, like - ‘I go home’, ‘2 is
prime’ etc.

A well formed formula (wff) is a finite sequence of symbols from a given al-
phabet which may or may not be part of a formal language. In our case (Defi-
nition 3), alphabet is not a part of language

Example 8 According to, rule (2), (¬p|), (¬p||), (¬(¬p|)), · · · , these are well
formed formula (wffs).

Note that, the meaning of

• (¬α): negation of α

• (α→ β): if α then β

Now, we can make the correspondence after having the interpretation of the
symbols with natural language. Hence, all the atomic sentences, via interpreta-
tion get truth values either ‘T ’ (True) or ‘F ’ (False).

α→ β is a new sentence composed of two sentences α and β, not a relationship.
So, α→ β should not be read as “α implies β”.

Example 9 As an example,

• p|: snow is white (T )

• p|: 3 is even (F ),
where T/F is decided by ‘Correspondence’ theory of truth

• if p| is F , then according to the truth table (Table 1.1, page 5) (¬p|) is T
(So, role of logic comes after getting truth values of wff.).

Suppose, p| is F and p|| also F , then p| → p|| (gives F → F ). Now the
question: is this a true implication?
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Valuation function:
Let v be a mapping that maps every atomic sentence to T or F , that is it maps
all the atomic sentence to a 2-valued set {T, F}. Usually, for a specific topic,
the number of atomic sentence are finite.

p|, p||, · · ·

L
T/F

v

v

Figure 2.2: Mapping of every atomic sentence to T or F

This function is extended over the whole set L.

Example 10 Using the truth tables (Table 1.1) we can get examples as below-

1. p| → ¬p|| and v(p|) = T , v(p||) = T .
Then, v(p| → ¬p||) = v(p|)→ ¬v(p||) = F

2. (p|| → p|) → (p| → ¬p||) and v(p|) = F , v(p||) = T .
Then, v((p|| → p|)→ (p| → ¬p||))
= v(p|| → p|) → v(p| → ¬p||)
= (v(p||)→ v(p|)) → (v(p|)→ ¬v(p||))
= (T → F ) → (F → F )

= F → T

= T

Definition 4 If α, β ∈ L, then we write

• α ∧ β for ¬(α→ ¬β)

• α ∨ β for (¬α)→ β

Definition 5 X ` α holds if and only if for all valuation v, v(x) = T for all
x ∈ X implies v(α) = T . This means, if premise is true, then conclusion is true.

In the next chapter, we shall discuss the notion elaborately.



Chapter 3

Propositional Logic: Semantic and
Syntactic definition
Class 3: Dated 3 - August - 2016

The definition of logic is already given in the Chapters 1, 2. Turnstile ‘`’ is
the relation which is defined by X ` α where α ∈ L, X ⊆ L. We can say, α is
a consequence of X. So, ‘`’ is called the consequence relation where X is said to
be premise and α is said to be the conclusion.

3.1 Propositional Logic: Valuation function

Let ‘`’ be the consequence relation of classical logic with valuation v which is
2-valued. Then the valuation maps the atomic sentences to either 0 (False) or
1 (True) i.e. v: A → {T, F} where A is the set of all atomic formula. The
extension of the valuation over the set of all wffs can be written as,

Definition 6

v(¬α) =

{
1 iff v(α) = 0

0 iff v(α) = 1

Definition 7

v(α→ β) =

{
0 iff v(α) = 1 and v(β) = 0

1 Otherwise

Symbols 1 and 0 are often used for T(true) and F (false). Properties of the
numbers 1 and 0 sometimes help in determining values of complex formulae.

Here, two basic symbols are taken: ¬ and → (Definition 6, 7). We shall
introduce two more symbols- ∧ (conjunction) and ∨ (disjunction). Based on the

12
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two symbols (¬, →) we define the following.

Definition 8 α ∧ β ≡ ¬(α→ ¬β)

Definition 9 α ∨ β ≡ (¬α)→ β

From definition 6 and 7 follow the equations given below:

v(α ∧ β) =

{
1 iff v(α) = 1 = v(β)

0 Otherwise
(3.1)

and

v(α ∨ β) =

{
1 iff either v(α) or v(β) = 1

0 iff v(α) = 0 = v(β)
(3.2)

Proof of equation 3.1: α ∧ β ≡ ¬(α → ¬β). Therefore, v(α ∧ β) = v(¬(α →
¬β)). v(¬(α→ ¬β)) = 1 if and only if v(α→ ¬β) = 0. From 7, we know that,
v(α → ¬β) = 0 iff v(α) = 1 and v(¬β) = 0 i.e. v(α) = 1 and v(β) = 1. Hence
proved.

Proof of equation 3.2: α∨β ≡ (¬α)→ β. Therefore, v(α∧β) = v((¬α)→ β).
v((¬α) → β) = 0 if and only if v(¬α) = 1 and v(β) = 0 (From Definition 7).
From definition 6, we know that, v(¬α) = 1 if and only if v(α) = 0. Therefore,
v((¬α)→ β) = 0 if and only if v(α) = 0 and v(β) = 0. Hence proved.

It is interesting to note that the truth tables for ¬, →, ∧, ∨ may now be
expressed by operations on numerals 0 and 1 as v(¬α) = 1− v(α), v(α→ β) =
max(1−v(α), v(β)), v(α∧β) = min(v(α), v(β)) and v(α∨β) = max(v(α), v(β))

respectively. The mystery of truth is captured by the mystery of numbers,
Strange!

3.2 Tautology, Contradiction and Contingents

Definition 10 Tautology: A tautology is a formula α that is true for every
possible valuation. This means v(α) = 1 for all v.

Example 11 α→ (β → α)
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Example 12 α ∨ (¬α)

The above two formulae are true for any value of α and β, v(α), v(β) ∈ {0, 1}.

The truth table of example 11 is given in table 3.1. It shows that the value of
the formula in the example is always 1 and hence the formula, α→ (β → α), is
a tautology.

Table 3.1: Truthtable of α→ (β → α)

α β α → (β → α)

1 1 1
1 0 1
0 1 1
0 0 1

Definition 11 Contradiction: A contradiction is a formula α such that v(α) =

0 for all v.

Example 13 ¬(α→ (β → α)).

Table 3.2: Truthtable of ¬(α→ (β → α))

α β ¬(α → (β → α))

1 1 0
1 0 0
0 1 0
0 0 0

A truth table of example 13 is given in table 3.2.

Definition 12 Contingents: There are other well formed formulae (wffs) which
are sometimes true and sometimes false. These wffs are known as Contingents.

Example 14 p| ∧ (¬p||) is a contingent.

Table 3.3 represents a contingent for example 14.

Def. 5 of chapter 2 now reduces to a more precise mathematical statement viz.
Def. 13.
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Table 3.3: Truthtable of p| ∧ (¬p||)

p| p|| p| ∧ (¬p||)
1 1 0
1 0 1
0 1 0
0 0 0

Definition 13 X ` α holds if and only if for all valuation v, whenever v(x) = 1

for all x ∈ X, v(α) = 1.

It might be that for some premise X ⊆ L, there is no valuation v for which
every member of X is true. In such a case, X ` α holds for all α.

Now, we can prove the Overlap, Dilution, Cut properties by using the valuation
function. Here, we show the proof of Dilusion property.

Dilusion Property: If X ` α and X ⊆ Y , then Y ` α holds.

Proof: Let v be an arbitrary valuation and v(Y ) = 1. Since, X ⊆ Y , so v (X)
= 1. As X ` α is given, therefore v(α) = 1 and hence Y ` α holds.

Exercise 1: Prove that the relation ‘`’ (relation with valuation) satisfies overlap
and cut.
Say, X ` α is defined as above. Note that there has been no restriction on X.

Naturally, question may arise what is meant by φ ` α when X = ∅ (null set).
It means that if v(x) = 1 for all x ∈ ∅, then v(α) = 1. For any v, v(x) = 1 for
all x ∈ ∅ is false as ∅ does not contain any value. So, for all v, v(α) = 1 and
hence α is a tautology.

Now, here come some questions. How many such tautologies one can have? Is
it possible to describe everything by knowing only a few tautologies? How many
of the tautologies are fundamental and how many of them can be described?
It would be easy if some of the tautologies are identified and the rest could
be written in terms of these tautologies because there exist actually infinitely
many tautologies. But which one can be called basic tautologies among all the
tautologies? Can we say some tautologies as basic? The answer is ‘Yes’. We
can say some tautologies as basic. If we can say that some tautologies are basic,
it means we can group those basic tautologies. The basic tautologies can be
extracted from all the tautologies and the other tautologies are derived from the
basics. For this, ` is used and this is the reason why axiomatic system is formed.
Axiomatic system defines ` syntactically. When I am defining the consequence
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semantically, I am an outsider. But when the definition is given syntactically,
then I am an insider of the system.

Solve some questions given below.
Exercise 2: Find X, α such that X ` α does not hold.
Exercise 3: Is ` countable or uncountable?

3.3 Defining ‘`’ without valuation: Axiomatic way of def-
inition

Let Ax be a non-empty subset of wffs given by,

• Axiom 1: α→ (β → α)

• Axiom 2: (α→ (β → γ))→ ((α→ β)→ (α→ γ))

• Axiom 3: (¬α→ ¬β)→ (β → α)

where α, β, γ are any wffs. Also let us take a rule viz.

• Rule: set {α, α→ β} is related to β (Definition of Modus Ponens).

All the three axioms and the rule mentioned above are syntactic that is de-
pendent only on their forms. Based on these axioms and rule, we can now define
the `Ax relation.

Definition 14 X `Ax α holds iff there is a sequence α1, α2, · · · αn of wffs such
that

• αn ≡ α

• any αi is either in

– Ax,

– or in X,

– or is obtained by the rule i.e Modus Ponen (M.P) from the previous
wffs of the sequence.

Definition 15 Theorem/Thesis: When X = φ (null set), i.e. φ `Ax α, then
α is called the theorem or the thesis and it is represented by `Ax α.

Example 15 Establish α→ α is a thesis i.e. `Ax (α→ α)
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By definition 14, we need some wffs where the last wff is α → α and other
wffs are either axioms or obtained by modus ponens from the previous wffs. The
following sequence of wffs satisfies the conditions of the definition of thesis.

1. α→ ((α→ α)→ α) ( Axiom 1 )

2. (α→ ((α→ α)→ α))→ ((α→ (α→ α))→ (α→ α)) ( Axiom 2 )

3. (α→ (α→ α))→ (α→ α) ( M.P on steps 1, 2 )

4. α→ (α→ α) ( Axiom 1 )

5. α→ α ( M.P on steps 3, 4 )

Hence, α→ α is a thesis.

Example 16 Establish {α, α→ β, β → γ} ` γ
Some wffs are given as follows:

1. α ( in the Premise )

2. α→ β ( in the Premise )

3. β ( M.P on steps 1, 2 )

4. β → γ ( in the Premise )

5. γ ( M.P on steps 3, 4 )

The above sequence of wffs satisfies the conditions given in definition 14. Hence
{α, α→ β, β → γ} ` γ holds.

Proposition: Given any axiom α, `Ax α holds i.e. α is a thesis.

Note that, all the axioms are theses, but all theses are not axioms. Figure 3.1
depicts that the set of axioms is a subset of the set of theses or theorems.

Thesis

Axiom

Figure 3.1: all axioms are theorem, but all theorem are not axioms

Now, we can prove that axiomatic relation `Ax satisfies Overlap, Dilution, Cut
properties. Here, we show that axiomatic relation ‘`Ax ’ satisfies ‘cut’.
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Theorem 1 The axiomatic relation ‘`Ax’ satisfies ‘cut’.

Recall: Cut, if X ` y ∈ Y and Y ` α, then X ` α. Fig. 3.2 depicts the proof
of Cut.

y1

y2

y5

y4

y3

...

...

x 
Ax
y
2 Y

x Ax
y
5

Y

Figure 3.2: The chain of wffs satisfying the properties of Y `Ax α transformed into a chain of wffs
to show that X `Ax α

Definition 16 Derivation of α from the Premise: For X `Ax α, if we get
such a chain α1, α2, · · · , αn(≡ α), then the chain is called a derivation of α from
the Premise X.

Here everything is syntactic and it depends on the form only. It is useful for
computer. The derivation of a formula from a set is not unique.

If `Ax ≡ `, then we can say X `Ax α if and only if X ` α. A machine will
check for X `Ax α if it wants to verify whether X ` α is true or not. If φ `Ax

α, then φ ` α is a tautology.

• If X `Ax α is true then X ` α is also true. This is called Soundness.

• If X ` α is true then X `Ax α is also true. This is called Completeness.

This axiomatic system is called Hilbert type axiomatic system.

3.4 Exercise

• Prove that the relation ‘`Ax ’ (Axiomatic relation) satisfies overlap and dilu-
sion.

• Is the relation ‘`Ax ’ is uncountably many? State the reason.



Chapter 4

Propositional Logic: Deduction
Theorem
Class 4: Dated 9 - August - 2016

4.1 Deduction Theorem

Theorem 2 (Deduction Theorem) If Γ is a set of wffs and α and β are wffs,
and Γ ∪ {α} ` β, then Γ ` α → β (Herbrand, 1930).

Proof:

The proof is by induction on the length n of the derivation of β from Γ ∪ {α}.
Let such a derivation be

α1

α2

.

.

αi

.

.

αn = β

Therefore, the wffs α1, α2, · · · , αi are either from Axioms or Premises or
obtained by MP.

19
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Now, to prove this theorem, we need strong induction. By using weak induc-
tion we can not prove it.

Strong induction and weak induction:

In weak induction we use “if p(k) is true then p(k+1) is true” while in strong
induction we use “if p(i) is true for all i less than or equal to k then p(k+1) is
true”, where p(k) is some statement about the positive integer k.

Sketch of proof:

Theorem holds for the least element.

if the theorem holds for all n 6 m then it holds for m+1

∴ Theorem holds for all n > least element.

Basis step: n=1, So, three possibilities:

1: β is an Axiom.

2: β is Γ.

3: β is {α}.

Case 1:

1. β (Axiom)
2. β → (α → β) (Axiom 1)
3. α → β (MP )

So, The theorem holds.

Case 2:

1. β (Premises)
2. β → (α → β) (Axiom 1)
3. α → β (MP )

So, The theorem holds.

Case 3: So, we need to derive α → α from Γ. Now, `Ax α → α (already
proved). So, α → α. Therefore, the theorem holds.

If the theorem is true for all n 6 m then it is true for n = m+ 1.

Induction hypothesis: Assume that the theorem is true for all n 6 m

So, we shall show that, the theorem holds for n = m+1.
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So, β may be derived from Γ ∪ {α} through following steps.

1: β is an Axiom.

2: β is in Γ.

3: β is in {α}.

4: β is obtained by MP.

• cases 1, 2, 3 as before.

• case 4:

Let,Γ ∪ {α} `Ax αi, i 6 m. (4.1)

Γ ∪ {α} `Ax αj, j 6 m. (4.2)

α1

α2

..

αi = αi

...

αj = αi → β

αm+1 = β

So,Γ `Ax α→ αi

Γ `Ax α→ αj

Γ `Ax α→ (αi → β)

Therefore,

1. α → (αi → β)

2. (α → (αi → β)) → ((α → αi) → (α → β)) [Axiom 2]

3. (α → αi) → (α → β) [MP ]

4. α → αi
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5. α → β [MP ] (proved).

Deduction Theorem (Special case:) Let assume that Γ = ∅. Thus the
statement is, if α `Ax β then ∅ `Ax α → β.

Theorem 3 (Converse of Deduction Theorem) If Γ is a set of wffs and α
and β are wffs, and Γ `Ax α → β then Γ ∪ {α} `Ax β.

Converse of Deduction Theorem (Special case:) If `Ax α → β then α
`Ax β.

4.2 Explosiveness property

We have to prove that,

` ¬ α → (α → β).

Proof:

1. (¬ β → ¬ α) → (α → β) [Axiom 3]

2. ((¬ β → ¬ α)→ (α → β))→ (¬ α → ((¬ β → ¬ α)→ (α → β))) [Axiom
1]

3. ¬ α → ((¬ β → ¬ α) → (α → β)) [MP 1, 2]

4. (¬ α → (¬ β → ¬ α)) → (¬ α → (α → β)) [Axiom 2 and MP]

5. ¬ α → (¬ β → ¬ α) [Axiom 1]

6. ¬ α → (α → β) [MP 4, 5]

Now, we know: ` ¬ α → (α → β)

by converse D.T

¬ α ` α → β

by converse D.T

{¬ α,α} ` β

Remark: From a premise comprising of wffs α, ¬ α, any wff β follows.

This property is known as explosiveness.
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4.3 Negation inconsistent and Absolute inconsistent

Definition 17 Negation inconsistency: a set Γ is inconsistent iff there is a
wff α such that Γ ` α, Γ ` ¬ α.

Remark: So, from a negation inconsistent set Γ, any β follows (see the above box).

Definition 18 Absolute inconsistency: When, from an inconsistent premise
Γ, any β follows.

Γ ` β(any)

Trivially, from absolute inconsistency, negative inconsistency follows.

Exercise: Prove that: if Γ ∪ {¬ α} ` β, ¬ β then Γ ` α.
Note:

• In classical logic, negation inconsistency is equivalent to absolute inconsis-
tency but there are logics where this equivalence does not hold.

• Paraconsistent logic is a logic group which does not believe in this equiva-
lence.

• Paraconsistency means, if Γ ` α and Γ ` ¬ α, that does not imply Γ `
β, for all β. That is, they do not believe in that inconsistency implies
explosiveness.

• “If Γ ∪ {¬ α} ` β, ¬ β then Γ ` α.” is reductio ad absurdum accepted by
the intuitionist logician or constructivist.

• What about “If Γ ∪ {α} ` β, ¬ β then Γ ` ¬ α.”?

The intuitionists do not accept this generally.
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Propositional Logic: Soundness
and Completeness
Class 5: Dated 12 - August - 2016

According to Chapter 2 and 3, we can define consequence relation in two dif-
ferent way i.e. Γ ` α and Γ `Ax α.

Definition 19 Γ ` α means, when for all v, v(Γ) = {1}, then v(α) = 1. Here
v is valuation. In this relation we use valuation. So, it is called semantic
definition. The motivation for such a definition is that it is about a valid
argumentation.

Definition 20 Similarly, Γ `Ax α iff there is a sequence α1, α2, α3, · · · , αn of
wffs such that–

(i) αn = α;

(ii) Any αi, is either in axiom(Ax) or in Γ or is obtained by the rule MP from
the previous wffs of the sequence.

So the relation Γ `Ax α is based on only syntax. For that reason it is called
syntactic definition. For computer, we need this syntactic relation.

Now, we have to see the relationship between these two types of definition
Γ ` α and Γ `Ax α.

Here, many types of situation may occur. (i) Γ ` α holds but machine cannot
derive, i.e. Γ 0Ax α, (ii) Γ `Ax α holds but Γ 0 α and (iii) both Γ ` α and
Γ `Ax α holds.

Now we can say that in case of situation (ii), the program is not good enough
and in case of situation (iii) the program is good. Situation (iii) can be shown
by proving: Γ `Ax α ⇒ Γ ` α and Γ ` α ⇒ Γ `Ax α.

24
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[Note: In physics, semantics (i.e. observations) and syntactic method of
everything do not match]

5.1 Soundness and Completeness

Definition 21 Γ `Ax α ⇒ Γ ` α
means, if the machinery produce α from Γ then Γ ` α holds This system is

called sound.

Proof of Soundness is obtained by,
first showing that all the axioms are tautologies and
second, the rule M.P preserves truth i.e. if for any valuation v, v(α) = 1 and
v(α→ β) = 1 then v(β) = 1.

Now, let Γ `Ax α. Then there is a chain,

α1

α2

.

.

.

αn (≡) α

With the conditions stated in Definition 14. So, if for a valuation v, v(Γ) =
{1}, then v(αn) = v(α) = 1.

Definition 22 Γ ` α ⇒ Γ `Ax α

means, when Γ ` α holds then the machinery produce each α for any Γ, this
is known as complete.

[Note that, Any observation is semantic but the explanation is syntactic.
It is also possible that Syntax may or may not be satisfy Semantics.

Example 17 As an example, we can write that Physical theory = Syntax,
Practical experiment = Semantic.]

For proof of Completeness, see Chapter 8



Chapter 6

Modal Propositional Logic
Class 5: Dated 12 - August - 2016

6.1 Modal Propositional Logic

Modal logic can be defined by the pair (L,`Ax). Here, the alphabet A of L is
extended, A = {p,|,∼,→,(,),�}. Note that, the extended part is �, where � is
a unary logical connective.

Definition 23 The object language L over the alphabet A is defined as follows.

1. Any p followed by a finite number of | marks in L.

2. If α is a wffs then (∼ α), (�α) are formulas.

3. If α, β are wffs then (α→ β) is a wffs.

4. Nothing else is a wff.

Example 18 �p |, �(∼ p |) are wffs but (p | �p ||) is not a wff.

•Necessity Operator (�): Unary logical connectives � is known as necessity
operator. We read �p | as ‘necessarily p |’, where p | is a sentence.

p |: Ram is honest.
∼ p |: Ram is not honest.
� ∼ p |: Necessarily Ram is not honest.

∼ � ∼ p |: It is not that necessarily Ram is not honest.

m m
♦ possibly Ram is honest.

26
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So here another logical connectives is derived, i.e. ∼ � ∼ ≡ ♦, which is known
as possibility operator(♦).
•Possibility Operator(♦): we read ♦p | as possibly p |, where p | is a sentence.
p |: Ram is honest.
∼ p |: Ram is not honest.
♦ ∼ p |: Possibly Ram is not honest.

∼ ♦ ∼ p |: It is not that possibly Ram is not honest.

m m
� necessarily Ram is honest.

So we can also drive � from ♦, i.e. ∼ ♦ ∼ ≡ �.
Note that, all the tautologies are necessarily true. That does not mean only

tautologies are necessarily true. So, Tautology ⊆ Necessarily True.

For example, ‘the angle sum of triangles is two right angles’ is necessarily true
but not a tautology.

6.2 Accessibility Relation

A set of situations W ≡ {W1, W2, · · · } which is shown in Figure 6.1. Consider
a binary relation R in W i.e, between two such situation either W1 R W2 holds
or does not hold. Now if we again consider that in W1, p1, p2, p3 and p4 are four
different sentences. In W1 the value of those sentences are shown in figure 6.1.
The value of those sentences may be different in situation W2, i.e. V(p1,W1)
= 1 and V(p1,W2) = 0. Set of situations with a binary relation i.e. (W, R) is
known as Kripke frame.

P1 = T
P2 = F
P3 = F
P4 = T

R

Set of situation/ All situation (W)

R ⊆ W ×W

W1

W2

P1 = F
P2 = T
P3 = F
P4 = T

Figure 6.1: Set of situations

In case of classical propositional logic the valuation v: L→ {1, 0} but in case
of modal propositional logic v: L ×W → {1, 0}. In modal propositional logic,
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the valuation function can be extended over the whole set of wffs by,

•
v(∼ α,Wi) =

{
1 iff v(α,Wi) = 0

0 iff v(α,Wi) = 1

•
v(α→ β,Wi) =

{
0 iff v(α,Wi) = 1 and v(β,Wi) = 0

1 otherwise

•
v(α ∧ β,Wi) =

{
1 iff v(α,Wi) = 1 and v(β,Wi) = 1

0 otherwise

•
v(α ∨ β,Wi) =

{
1 iff v(α,Wi) = 1 or v(β,Wi) = 1

0 otherwise

• v(�α,Wi) = 1 iff for all W ′ such that WRW
′ holds we get v(α,W ′) = 1

(Necessarily α is true in W , if α is true at all situations related to W .

• v(♦α,W ) = 1 iff for some W ′ such that WRW
′ holds we get v(α,W ′) = 1

Note that, W ′ is said to be accessible from W . For that reason the relation R
is known as accessibility relation .

6.3 Modal System T

A modal system T with axioms and rules:

Axioms:

• PL Axioms: Propositions logics axioms.

• Proper modal axioms:

– Axioms K:
�(α→ β)→ (�α→ �β)

Therefore, if necessarily (α→ β) and necessarily α then necessarily β.
– Axiom T:

�α→ α

Therefore, if necessarily α then α is true or if something is necessarily
true then it is true.
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Note: Another interpretation of �α may be ‘one knows that α’. According to
this interpretation Axiom K says ‘if one knows that (α→ β) and knows that α
then one knows that β’, this is called forward (positive) introspection. Under
this interpretation Axiom T reads as ‘if one knows that α then α (is true)’.

Rules:

• MP:
α, α→ β

β

• N:
α

�α [if α is true everywhere then α is necessarily true.]

In the interpretation, we consider reflexive relation. When we change the
relation then axiom T changes, but other axioms and rules are fixed.

Here, to the alphabet of propositional logic, one extra operator � was added,
which is an unary operator.

P,|,(,),~,

P|,P||....

,

Alphabet

Formulae

Now, the question is: How is formulae L formed? As in Def. 23,

• P|· · · | (n times, where n ≥ 1), i.e. P|,P||,· · · .
• If α is a wff, then v α,�α are also wffs.

• If α, β are wffs, then (α→ β) is a wff.

• Nothing else.

Here, L is the language. Now, from a different direction, any operator in propo-
sitional logic is identified by the truth table.
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α v α
T F
F T

Note that, this is a mapping v: {T, F} 7→ {T, F}. Now, we try to understand
the truth value of �.

α �α
T ?
F ?

Here, the question is that if α is T or F, can we say what would be the value
of �α ?

Let us observe that, if in a formula, there are n atomic formulae, then it forms
an n-ary function in case of classical propositional logic. As an example, (P1
→v P2) ∧ P3 gives the function {T,F}3 → {T,F}. Therefore, the corresponding
table can be shown as follows:

P1 P2 P3 (P1 →v P2) ∧ P3
· · · · · · · · · · · ·

Technically the function is written as, f(P1→vP2)∧P3.

Similarly, for n-atomic formulae, the function can be written as {T,F}n →
{T,F}.

Now, let us assume an arbitrary function {T,F}3 → {T,F}:

P1 P2 P3 ?
T T T F
T T F T
T F T T
T F F F
F T T F
F T F F
F F T F
F F F F

Here, as there is no formula mentioned but after the table is made, obviously
this becomes a function. Such a function is known as truth function.

Now given any truth function, a question may arise: does there exist any
formula whose truth function is the given one ? The answer is ‘Yes’.

Note: An analogy can be drawn in this context when we try to find such formula.
It is the Karnaugh map. A Karnaugh map is a method of simplifying Boolean
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algebra expressions. For ease of understanding let us take an example given in
the following truth table. A formula is written in a disjunctive normal form
according to the truth values of the table. The formula is, (P1∧ v P2 ∧ P3)
∨ (P1∧ v P2∧ v P3) ∨ (v P1 ∧ P2 ∧ P3) ∨ (v P1∧ v P2∧ v P3). This
formula can be minimized with the help of a Karnaugh map (K-map) as shown
in Fig. 6.2. The minimized form of the formula is, (v P2∧ v P3) ∨ (P1∧ v P2)

∨ (v P1 ∧ P2 ∧ P3)

P1

P2P3 FF FT TT TF

T

F

1 1

1 1

Figure 6.2: Karnaugh Map

Example 19 Let us take a truth function,

P1 P2 P3 ?
T F T T (P1∧ v P2 ∧ P3)
T F F T (P1∧ v P2∧ v P3)
F T T T (v P1 ∧ P2 ∧ P3)
F F F T (v P1∧ v P2∧ v P3)

Therefore, the formula is (P1∧ v P2 ∧ P3) ∨ (P1∧ v P2∧ v P3) ∨ (v
P1 ∧ P2 ∧ P3) ∨ (v P1∧ v P2∧ v P3).

Any of the pairs {∧, ∨}, {∨, v}, {→, v} is enough to express any truth
function. This result is known as Adequacy theorem. So, extra unary or
binary operator taken would be redundant in classical logic. Hence, we can not
interprete � operator in this way. Now, we will discuss about the modal logic.

6.4 Entering into Modal logic:

Let us recall that, in modal logic, the valuation can be written as v: P × W
→ {T,F}, where P is the set of propositional variables. Hence, we can write
v(P1,W1) = T/F.
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P|,P||,..

L

{T,F}

P|,P||,..

L

{T,F}W
v

in classical logic in modal logic

Definition 24 v(v α, Wi) = T iff v(α, Wi) = F.

It is read as, v(v α) at Wi is true if and only if v(α) at Wi is false.

Definition 25

v(α→ β,Wi) =

{
F iff v(α,Wi) = T and v(β,Wi) = F

T Otherwise

It follows,

1. v(α ∧ β,Wi) = T iff v(α,Wi) = T and v(β,Wi) = T.

2. v(α ∨ β,Wi) = T iff v(α,Wi) = T or v(β,Wi) = T.

Now, our issue is when we can say v(�α,Wi) = T.

To address this, let us consider, W: non-empty set of worlds; and R: binary
relation on W. Therefore, we get (W,R) and W1 R W2 may or may not hold for
W1, W2 ∈ W . W1RW2 means W2 is accessible to W1.

Definition 26 v(�α,Wi)=T iff v(α,W ′) = T , for all W ′ such that WiRW
′

holds. Here, R is called the accessibility relation.

Example 20 Let us consider, W = {W1,W2,W3} and R =W1RW2,W1RW1,W3RW2.

(Given that P1, P2 are true in W1. P2 is true in W2 at Wj. Let us take a
formula P1 → �P2. We want to calculate its value, i.e. v(P1 → �P2, W1) = ?

Here, P1,P2 are true in W1, and P2 is true in W2. Related to this, we want to
calculate the value v(P1 → �P2, W1). Now, v(P1 → �P2, W1) = T when

1. v(�P2, W1) = T, v(P1, W1) = T.
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w1
w2

w3

p
1

p
2

p
2

2. v(�P2, W1) = T, v(P1, W1) = F.

3. v(�P2, W1) = F, v(P1, W1) = F.

Here, v(P1, W1) = T and v(�P2, W1) = T. Hence v(P1 → �P2, W1) = T.

Example 21 Let us take another example.

w1
w2

w3

p
1

p
2

p
2

1p

Evaluate (i) v(P1 → �P2, W2) (ii) v(P2 → �P2, W2) (iii) v(��P1, W2).

(i) Here, v(P1,W2) = F and v(�P2, W2) = F. Hence v(P1 → �P2, W2) = T.

(ii) Here, v(P2,W2) = T and v(�P2, W2) = F. Hence v(P2 → �P2, W2) = F.

(iii) v(��P1, W2) = T iff v(�P1, W ′
2) = T for all W ′

2. Here, W ′
2 is related to

W3. P1 is here in W3. Hence v(�P1, W ′
2) = T. Therefore v(��P1, W2) = T.

Note:

1. If R is reflexive, T-axiom is always true, i.e. �α→ α.

2. The issue of decidability in case of classical logic is: “Whether the formula
is satisfiable or not”. However, the issue of decidability in case of modal
logic is: “If it is satisfiable, then can we construct W and R ?”
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3. � can also be interpreted as knowledge operator. In case of knowledge
operator ��P1 ≡ �P1. In knowledge operator �α → α means “If I know
α, then α is true”.

4. �P1∨ v �P1 is a classical tautology.

5. (α→ β) → (�α→ �β) is a modal tautology.

6. Kripke frame is a network.

Dated 12 - September - 2017

The alphabet in Modal propositional logic consists of: p, |, ¬, →, �, ), (. With
the help of these symbols, one forms the following wffs:
p|, p||, · · ·
p1, p2, · · ·
(¬α), (α→ β), (�α)

The axioms and rules of modal propositional logic are given as follows.
Axioms: All Propositional calculas (PC) axioms

+

K: (�(α→ β))→ (�α→ �β)

D: �α→ ♦α
T: �α→ α

B: α→ �♦α
S4: �α→ ��α
S5: ♦�α→ �α
Rules: α,α→β

β
, M.P

α
�α , N.

Axioms K, D, T, B, S4 and S5 are additional axioms. All PC axioms and
addional axiom K together constitute the minimal modal system. If axiom B
is derived, axioms K, D and T will automatically be followed. The hierarchy
of modal systems is given by System K, System KT, System KTB, System
KTS4, System KTS5. Fig. 6.3 depicts this hierarchy.

K D T

B

S4

S5

Figure 6.3: Graph representing the hierarchy order of modal logic systems
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∧ and ∨ can be defined in terms of ¬ and →. For example,
α ∧ β ≡ ¬(α→ ¬β)

α ∨ β ≡ (¬α)→ β.

♦α can be defined in terms of � as follows.
♦α ≡ ¬(�(¬α))

It means that ‘it is not the case that ¬α is necessary’. That is, we can say, α is
possible. This symbol ♦ ≡ possible.
Hence, all the operators are, ¬,→,∨,∧,�,♦.

• D-axiom: �α→ ♦α

Proposition 1 : Axiom D can be derived from T

Proof : Assume T.
So, �α→ α. We now derive D.
1. �¬α→ ¬α AxT

2. ¬¬α→ ¬�¬α PC
3. α→ ¬¬α PC
4. α→ ¬�¬α HS
5. �α→ α T
6. �α→ ¬�¬α HS
7. �α→ ♦α
�
In T, �α → α and α → ♦α are available. If �α → α is an axiom, then

α→ ♦α is a dual axiom. That is, if it is necessary then it is possible.

Exercise: Prove that �α ≡ ¬♦¬α
Note: From D one can not derive T, but from T, one can derive D.

6.5 Problems of Material Implication:

In the history of formation of modal logic, the following problems arose. Among
the four cases of implication, (T, F) → F is easily acceptable by everyone.
However, the other cases (F, T ) → T and (F, F ) → T are not easily accepted
by common sense. For example,
If 2 > 3, then 2 + 3 = 5. By definition it is true. But from intuition, it is not
acceptable. Again,
If 2 > 3, then 2 + 3 = 6. By definition, this is also T. But this is also not easily
accepted intuitively. Such problems again arise in material implication. Because
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of these implication → seems paradoxical. For example, (α → β) ∨ (β → α) is
a tautology. This means either α → β or β → α. These are called problems of
material implications.

Because of these problems in implication, implication should be more strict
(Lewis). Therefore, a new concept, called “strict implication” is formed and it
is denoted by ‘≺’. Now modal logic can be defined as,

Definition 27 α ≺ β ≡ �(α→ β)

So, in the enhanced modal logic there are two implication:

1. → (material implication)

2. ≺ (strict implication)

‘≺’ can imply ‘→’ i.e.
α≺β
α→β .

Proof : 1. �(α→ β)

2. In system T, we have �(α→ β)→ (α→ β)

3. α→ β , MP 1, 2 �
� ditributes over conjunction.

`T �(α ∧ β)↔ (�α ∧�β)

As, � distributes, its dual property can be written as,

`T ♦(α ∨ β)↔ (♦α ∨ ♦β)

6.6 Semantics:

Truth table for �α is meaningless, adequacy theorem says, any truth function
can be obtained by using (¬,∨) or (¬,∧) or (¬,→). So, there is no need to form
truth table for �α for its semantics.

Kripke Semantics:

Valuation v : P ×W → {T, F} where P is the set of propositional variables
and W is a non-empty set, called the set of worlds. v(pi, wi) = T/F . For any α,
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L

∼;!;

P
p1; p2

w1

w2

W worlds

relativised to

Figure 6.4

we need an extension. Now we extend v over L obeying the following rule:

v(¬α,w) =

{
T iff v(α,w) = F
F iff v(α,w) = T

(6.1)

v(α→ β, w) =

{
F iff v(α,w) = T and v(β, w) = F

T Otherwise
(6.2)

Semantics for the other connectives ∨ and ∧ follow.

v(α ∧ β, w) =

{
T iff v(α,w) = T and v(β, w) = T

F Otherwise
(6.3)

v(α ∨ β, w) =

{
T iff v(α,w) = T or v(β, w) = T

F Otherwise
(6.4)

To give semantics for �α, we need a binary relation R on W. The relation is
called Accessibility relation.

L

P

W

R

w

Figure 6.5

v(�α,w) = T iff v(α,w′) = T for all w′ such that wRw′ holds. It follows that,

v(♦α,w) = T iff v(α,w′) = T for some w′ s.t wRw′ (6.5)

Exercise: Check that we don’t need any condition on R to show
that axiom K is true at all worlds.
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We have the rules MP and N.
α, α→ β

β
, M.P

α

�α, N.
Now, we can derive two new rules using PC axioms and axiom K:

Proposition 2 : DR1:
α→ β

�α→ �β

Proof :

1. α→ β

2. �(α→ β) N

3. �(α→ β)→ (�α→ �β) Axiom K

4. �α→ �β MP

�

Proposition 3 : DR2:
α→ β

♦α→ ♦β

Proof :

1. α→ β

2. (α→ β)→ (¬β → ¬α) PC

3. ¬β → ¬α MP

4. �¬β → �¬α DR1

5. ¬�¬α→ ¬�¬β PC

6. ♦α→ ♦β Definition of ♦

�
Now, we can prove the following proposition in system K.

Proposition 4 : `K �(α ∧ β)↔ (�α ∧�β)

Proof : Proof of `K �(α ∧ β)→ (�α ∧�β):

1. (α ∧ β)→ α PC
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2. �(α ∧ β)→ �α DR1

3. (α ∧ β)→ β PC

4. �(α ∧ β)→ �β DR1

5. �(α ∧ β)→ (�α ∧�β) PC:
α→ β, α→ δ

α→ (β ∧ δ)

Similarly, we can also prove `T (�α ∧�β)→ �(α ∧ β).

So, by PC, `K �(α ∧ β)↔ (�α ∧�β) �

6.7 System K, Semantics

In system K, axiom K and all PC axioms are axioms of this system (see Fig-
ure 6.6). Now, take a Kripke Frame 〈W,R〉 and a valuation v such that

v : P ×W → {T, F}

Note that, a Kripke Frame with a valuation v is a model.

basic formula
P

Axioms
K

wffs

PC

Figure 6.6: System K

• A wff α is true in a model 〈W,R, v〉, if and only if, v(α,w) = T for all w ∈ W .

Example 22 Take W = {w1, w2}, where w1Rw2 and w2Rw2. α is a wff with
only p1, p2. The valuation function v is defined as follows:

v(p1, w1) = T

v(p2, w1) = F

v(p1, w2) = T

v(p2, w2) = T
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By using this, (�p1, w1) = T . Therefore, in this way, all formulas can be assigned
a truth value at each world.

• A formula is true in a model, if it is true in all worlds.

• A formula is universally true or valid, if and only if, it is true in all models. That
is, for all W, for all R, for all v, the formula has to be true.

Proposition 5 : All axioms of System K are valid/universally true.

Proof :

PC: Take an arbitrary axiom, say α → (β → α). Now, pick any world w and
any valuation v obtains v(α) and v(β)which are T/F . However, we know
that, α → (β → α) is a tautology. So, it is valid irrespective of 〈W,R, v〉.
Similarly, other axioms of PC can be proved to be valid.

Ax. K: We know, axiom K is (�(α→ β))→ (�α→ �β).

Take an arbitrary model 〈W,R, v〉. Take any w ∈ W . Now, the question is

v(K,w) =?

Let, it be F . This implies,

v((�(α→ β)), w) = T and v(�α→ �β), w) = F

That is, v((�(α→ β)), w) = T and v(�α,w) = T and v(�β, w) = F

Now, v(�α,w) = T ⇔ v(α,w′) = T for all w′, such that wRw′; v(�β, w) =

F ⇔ v(β, w′′) = F for some w′′, such that wRw′′; and v((�(α→ β)), w) =

T ⇔ v(((α→ β)), w′) = T for all w′, such that wRw′.

Therefore, the situation is, at w′′, α is T and β is F , so, α→ β is F . But,
this contradicts v((�(α→ β)), w) = T . So, v(K,w) = T .

�

6.8 System T

In system T , axiom K, axiom T and all PC axioms are axioms of this system
(see Figure 6.7). Now, take a Kripke Frame 〈W,R〉 and a valuation v.

Proposition 6 : The axiom T : �α→ α is valid/universally true in all reflexive
frames.
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basic formula
P

Axioms T

wffs

PC
K

Figure 6.7: System T

Proof : For the axiom T : �α→ α to be valid/universally true, v(T,w) must
be true for all w ∈ W . That is, v(�α→ α,w) = T . We shall show that, it can
not be F .

For, if F , v(�α,w) = T and v(α,w) = F . This situation can not be possible,
if we put a restriction on R. Take R as reflexive, then v(�α,w) = T and
v(α,w) = F is not possible since wRw holds. That means, if R is reflexive,
axiom T is valid. �
Reflexivity of R is a sufficient condition for axiom T to be valid. But, is this

also a necessary condition? We can prove that, this is also a necessary condition.
Therefore, system T is valid on all models with reflexive relations. The Kripke
Frame associated with system T is called reflexive Kripke Frame.

6.9 Other Axioms

Proposition 7 : The axiom S4 is true in all transitive models.

Proof : We have to prove that, v(S4, w) = T if R is transitive. That is,
v(�α→ ��α,w) = T for all w.

Let v(�α→ ��α,w) = F . This implies, v(�α,w) = T and v(��α,w) = F .

Now, a possible situation is shown in Figure 6.8. Here, the relation R is shown
by the arrows. As, R is transitive, so, wRw5. As, α is F in w5, so it contradicts
v(�α,w) = T . Therefore, v(�α→ ��α,w) can not be F . Hence, v(S4, w) = T

if R is transitive. �
Models of S4 are reflexive and transitive frames.

Proposition 8 : The axiom B is true in all symmetric models.
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w

w1 w2

w4
w5

w3

α, T

�α, T

α, T

α, T

α, F
α, T

�α, F��α, F

Figure 6.8

This can be similarly established that v(α→ �♦α) 6= F by showing a situation
in which R is symmetric.

Therefore, for system B, we need reflexive and symmetric frames. It follows
that, for system S5, models have to be reflexive, symmetric and transitive – that
is equivalent models with equivalence relations.

Note: In computer science modal operators are used to deal with many notions
other than necessity and possibility. For example, the operator � is used widely
as knowledge operator and modal systems S4 and S5 are usually taken as modal
systems appropriate for the linguistic phrase ‘know that’.



Chapter 7

Boolean Algebra and Propositional
Logic
Class 6: Dated 30 - August - 2016

7.1 Equivalence Relation

Definition 28 Equivalence Relation: A relation R on a set X is said to be
an equivalence relation if the relation R is reflexive, symmetric and transitive.

The equivalence relation R partitions the set X into non-empty disjoint subsets.
In particular the partition may consist of only the whole set X.

x1

x2
x3

X

Figure 7.1: Set X is divided into several subsets

Consider Figure 7.1 where a set X is divided into several subsets. Say, some
elements x1, x2, x3 exist in one of the subsets and are in equivalence relation R
with each other.

The Equivalence class of an element x is = {x|x′Rx}.
Note that. a equivalence class of x is denoted by [x]R or [x] simply.

Definition 29 Quotient Set: X/R = {[x] |x ∈ X}. Therefore, Quotient set
is a class of subsets of the set X.

Now in the set L of wffs of propositional logic we define an equivalence relation.
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Definition 30 αRβ is holds if and only if `Ax α→ β and `Ax β → α.

Theorem 4 R is reflexive, symmetric and transitive, i.e. R is an equivalence
relation.

Sketch of proof:

• Reflexivity: We have proved earlier that, `Ax α→ α. So αRα holds.

• Symmetry: Let us assume αRβ holds. From definition we get `Ax α→ β

and `Ax β → α. So, βRα holds.

• Transitivity: Let αRβ and βRγ hold. Therefore, from definition we get

`Ax α→ β (7.1)

`Ax β → α (7.2)

`Ax β → γ (7.3)

`Ax γ → β (7.4)

We need to show that αRγ i.e. `Ax α→ γ and `Ax γ → α.

From equation 7.1 and 7.3, we get `Ax α → γ. Again from equation 7.2
and 7.4, `Ax γ → α. Therefore, αRγ holds.

Note that, if L is a set and α ∈ L, then the quotient set is written as L/R:
{[α] |α ∈ L}

Definition 31 Corresponding to operators ∧, ∨ and ∼ in L, we define operators
Z, Y and ¬ in L/R as follows:

1. [α] Z [β] = [α ∧ β]

2. [α] Y [β] = [α ∨ β]

3. ¬[α] = [∼ α]

Z, Y, ¬ are the new operators defined in quotient algebra.

7.2 Boolean Algebra

Definition 32 Boolean Algebra is a complemented distributive lattice.
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7.2.1 Lattice

Definition 33 A Lattice is a partially ordered set such that any pair of element
has a least upper bound (lub) and greatest lower bound (glb).

Partially Ordered Set:

Definition 34 A set with a relation which is reflexive, anti-symmetric and tran-
sitive is known as Partially Ordered Set.

In Figure 7.2, there are 8 elements in a set and 5 ordered chains where the
relation is reflexive, anti-symmetric and transitive.

a
b

c

e

d

l

f

g

Figure 7.2: A Partially ordered set with 5 ordered chains

Least upper bound (lub) and Greatest lower bound (glb):

In Figure 7.2, l, d, f are the upper bounds of the elements a and b but the lub
of elements a and b is l. lub of one element is the element itself. glb of elements
e and d is a.

x yc

a b

d

e

lub of x and y

glb of x and yglb of a and b

1

0

f

Figure 7.3: A Lattice

Consider Figure 7.3. A lattice must be a partially ordered set i.e there must
be ordered chains. This figure has ordered chains. A lattice must have lub and
glb of any two elements. Elements a and b have their lub c and glb d. Similarly
elements x and c has its lub e and glb a. Thus, there is an lub and a glb for
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every two elements. So, Figure 7.3 is a lattice. An lub of two elements a and b
is written as a Y b and glb of two elements a and b is written as a Z b.

7.2.2 Distributive

Definition 35 The following properties must hold for a lattice to be distribu-
tive.

• a Z (b Y c) = (a Z b) Y (a Z c)

• a Y (b Z c) = (a Y b) Z (a Y c)

a

b c

d

e

Figure 7.4: A Lattice but not distributive

Lattice but not distributive: Figure 7.4 shows the elements a, b and c do not
satisfy the properties of distributivity but all the elements satisfy the properties
of lattice. In this case, a Z (b Y c) 6= (a Z b) Y (a Z c). So, Figure 7.4 is a lattice
but not distributive .

7.2.3 Complementation

• The lattice should be bounded. There must be a top element and a bottom
element. A finite lattice is a bounded lattice. An unbounded lattice is an
infinite lattice. Natural number set is an unbounded lattice.

• For each element a, there exists an element ¬a such that a Y ¬a = 1 and
a Z ¬a = 0.

Let X be a set. Then (P (X ),⊆,X , φ) is a complemented distributive lattice
i.e a Boolean Algebra where P (X ) is the power set of X.

Definition 36 Let [α] ≤ [β] iff `Ax α→ β

Definition 36 gives a partial order in L/R.

Theorem 5 glb ([α], [β]) = [α Z β]
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Sketch of proof: First, we need to see whether α ∧ β → α is a tautology or
not. From Table 7.1, it is seen that α ∧ β → α is a tautology. Similarly, we can
find out that α ∧ β → β is also a tautology. Hence, because of completeness of
propositional logic, α ∧ β → α and α ∧ β → β are theorems. So, according to
the definition, [α ∧ β] is a lower bound of [α] and [β]. Let [δ] be also a lower
bound of ([α], [β]) i.e. `Ax δ → α and `Ax δ → β hold. Then it can be shown
that `Ax δ → (α Z β) holds. Hence, δ ≤ α Z β and [δ] ≤ [α ∧ β]. Therefore,
[α Z β] is the greatest lower bound.

Table 7.1: Truthtable of α ∧ β → α

α β α ∧ β → α

T T T
T F T
F T T
F F T

Similarly we can show that [α] and [β] has the least upper bound [α ∨ β].
Exercise: Show that,1. L/R is a lattice. 2. L/R is also distributive.

Theorem 6 L/R is complemented.

Sketch of proof: [α] Y [¬α] = [α ∨ ¬α] = The class of theorems. Again
[α]Z¬[α] = [α∧¬α] = The class of contradictions. Now we shall see if the class
of theorems is the top element and the class of contradictions is the bottom
element or not. So, we need to show, any class [α] ≤ the class of theorems and
the class of contradictions ≤ [α].

Verify that, all theorems are in one class. Let us take the class of theorems
[γ] (i.e. γ is a theorem). We need to show that `Ax α → γ holds where γ is a
theorem and α is any formula.

We can prove it by the axiomatic definition of the relation `Ax . Let us take a
chain of formulae.

• γ [Since γ is a theorem]

• γ → (α→ γ) [Axiom]

• α→ γ (M.P of the above two)

α→ γ is a theorem as any formula→ theorem is a theorem.
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Therefore, [α] ≤ the class of all theorems. Similarly, we can show that the
class of contradictions ≤ [α].

Remark 1 So, we can write the Boolean Algebra as, (L/R, ≤, Z, Y, ⇁, 1, 0)
where 1 stands for the set of all theorems and 0 for the set of all contradictions
(or anti-theorems). This is known as Lindenbaum-Tarskey algebra of the
logic.

Exercise: Complete the proof by filling in the gaps.



Chapter 8

Propositional Logic: Proof of
Completeness Theorem
Class 9: Dated 08 - November - 2016

8.1 Completeness Theorem of Propositional Logic:

Statement: If Γ ` α then Γ `Ax α. · · · (1)

8.1.1 Need for Completeness Theorem:

Say, we have a machine which takes a finite set of formula (Γ) and a formula
(α) as input. The machine has information regarding the set of axioms Ax and
the rule MP. The query is, whether it can decide Γ ` α. See Figure 8.1.

Ax

Rule MP
Γ, α Γ ` α

?

Figure 8.1: The hypothetical machine for completeness theorem

In general, this can not be decided. However, if along with these inputs, a
derivation

49
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α1

α2

...

αn ≡ α

is also given and the machine is to check whether it is a derivation of α from
Γ or not, then, the machine can check it. In other words, “whether a sequence
is a valid derivation or not” can be checked by a computer.

Let us assume that, Γ ` α is true [Fact] from semantic angle. The question is,
whether it is possible to get a sequence which proves its validity by axiomatic
definition? In other words, whatever way we consider this to be a valid argument,
is it also possible to get it syntactically? That means, assume for all valuations
v,

v(γ) = T, for all γ ∈ Γ implies v(α) = T.

That is, semantically α is a correct conclusion. Then, is it possible to obtain
α from Γ? If α is obtainable from Γ from the axiom system, then the logical
system is complete.

Example 23 In Eucledian axiommatic system, is it possible to derive the 5th

postulate from the first four postulates? That is,

Postulates 1− 4 `Ax Postulate 5?

The statement is called completeness . The scenario is shown in Figure 8.2.
The completeness theorem says that, this is obtainable.

{α1, · · ·αn}` α

Ax MP

G iven

.........α
Is such a

der ivat ion
obtainable?

Figure 8.2: The completeness theorem

8.2 Proof of Completeness Theorem

The following proof is due to Leon Henkin. The proof is done in three steps:
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Step 1: Any consistent set Γ of wffs can be extended to a maximal consistent set
∆ [Lindenbanm Lemma].

Step 2: ∆ has a model, that is, there is a valuation v, such that, v(∆) = {1}, i.e,
true.

Step 3: The main proof of completeness statement.

First two steps are Lemmas and need to be proved before going to Step 3.
Step 2 of the proof is the most important one. But before we go into the proof,
let us define the following:

Definition 37 A set Γ is called inconsistent, if and only if, there is a well formed
formula α, such that Γ `Ax α and Γ `Ax ¬α.

That means, if a wff α is part of a consistent set, ¬α can not be derived from
the set. However, each consistent set can be extended to a maximal consistent
set.

Definition 38 A set ∆ of wffs is maximal consistent if and only if

1. ∆ is consistent.

2. for any α /∈ ∆, ∆ ∪ {α} is inconsistent.

That is, any formula added to it from outside, makes it inconsistent. See
Figure 8.3.

Γ

...
∆

Figure 8.3: A maximal consistent set of Γ

Now, we can move on to the proof of completeness theorem.
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8.3 Proof of Step 1 (Lindenbanm Lemma):

Proposition 9 Any consistent set Γ of wffs can be extended to a maximal con-
sistent set ∆.

Proof: Let us enumerate the wffs of L as

α1, α2, α3, · · ·
Note that, although the alphabet is finite, but the formula set is infinite. The
symbol · · · is used to represent the infinite continuity.

Now construct the sets of wffs

Γ0,Γ1,Γ2, · · ·
as follows:

Γ0 = Γ

Γ1 = Γ0 ∪ {α1}, if this is consistent
= Γ0, otherwise

Γ2 = Γ1 ∪ {α2}, if this is consistent
= Γ1, otherwise
.

.

.

From this construction, it is obvious that,

Γ0 ⊆ Γ1 ⊆ Γ2 ⊆ · · ·
Now take ⋃

i

Γi = ∆

[Mathematically, there is no problem as it is an well defined set, but computa-
tionally it is problematic.] The set

⋃
i

Γi is defined as:

Definition 39 α ∈ ⋃
i

Γi if and only if α ∈ Γi for some i.

This also means that, for any wff α, either α ∈ ⋃
i

Γi or ¬α ∈
⋃
i

Γi

∆ =
⋃
i

Γi is the maximal consistent set.
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8.3.1 Sketch of Proof:

Proof for Consistency of ∆: Let ∆ be inconsistent, then there exists some
β, such that ∆ `Ax β and ∆ `Ax ¬β. This implies there exist two derivations

β1, β2, · · · βk(= β) (8.1)

β′1, β
′
2, · · · β′m(= ¬β) (8.2)

All the formulas of derivation 8.1 and derivation 8.2 must be from either ∆ =⋃
i

Γi, or from Axioms or by MP rule. As these derivations are finite, they must

have been included in some Γk which may be sufficiently large. Let us assume
that, derivation 8.1 is from set Γk and derivation 8.2 is from set Γk′ . As both
Γk,Γk′ ⊆ ∆, that means according to the formation procedure either Γk ⊆ Γk′ or
Γk′ ⊆ Γk. In each case, the larger set derives both β and ¬β, which makes the set
inconsistent. However, as per the formation procedure, all the Γis are consistent,
so this is not possible. Therefore, ∆ can not be inconsistent, because, if ∆ is
inconsistent, one of Γis must be inconsistent, which is not true. [Consistency of
∆ is proved]

Proof for Maximality of ∆: Let ∆ be not maximally consistent. Then there
exists α /∈ ∆ and a new set is formed as ∆ ∪ {α} and ∆ ∪ {α} is consistent.
Recall that, in the process of constructing monotonically increasing consistent
sets, the wffs are arranged and enumerated as

α1, α2, · · · , αi(= α), · · ·

Therefore, if αi = α, then the set Γi−1 ∪ {αi} is already checked for consistency.
If this set is found to be inconsistent, then in the procedure, αi(= α) is left out
and not an element of the set Γi = Γi−1. As Γi ⊆ ∆, so, αi(= α) can not be in
∆. In other words, if Γi = Γi−1∪{αi} is inconsistent, then as Γi ⊆ ∆ ⊆ ∆∪{α},
so, ∆ is inconsistent, which is not true. Therefore, ∆ ∪ {α} is also inconsistent
and α can not be added in to the set ∆.

On the other hand, if Γi−1∪{αi} is consistent, then αi = α ∈ Γi. That means,
α ∈ ∆.

So, ∆ is the maximally consistent set.

There can be more than one ways of arrangements of the wffs αis. So, there
can be several maximally consistent sets (see Figure 8.4).
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Γ

...
∆1

. . .

· · ·
∆2

∆3

Figure 8.4: Some maximal consistent sets of Γ

8.3.2 Why is it necessary to prove consistency of ∆ when it is true
that each Γi is consistent?

We have taken ∆ =
⋃
i

Γi, that is, as arbitrary union over i of Γi. However, it

can not be surely said whether the properties of individual consistent sets shall
also hold over arbitrary union, because such union is only describable, we do not
‘see’ it. This is intuitively true, so to show it in any other way than intuition,
we have to prove. There are many examples where the properties are finitely
true, but not true over arbitrarily infinite set.

Example 24 Figure 8.5 gives an example of arbitrary union and intersection
over two sets of points. In this figure, A and B are two sets of points on a
line. Take A ∩ B, which is non-zero length of interval and also a set of points.
However, if we continue with this, the resulting set over arbitrary intersection⋂

[[[· · · ]]] is 1 singleton point.

0 1 21
2 1 1

2

A

B

Figure 8.5: Arbitrary union and intersection over a set of points
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8.3.3 Properties of Maximal Consistent Set

1. If ∆ `Ax α, then α ∈ ∆. That is, nothing outside of ∆ follows from ∆.

Proof: Let α /∈ ∆, then ∆ ∪ {α} is inconsistent. That means, ∆ `Ax ¬α.
But as per the statement, ∆ `Ax α. This violates consistency of ∆. So,
α ∈ ∆.

2. α, β ∈ ∆ if and only if α ∧ β ∈ ∆.

3. α ∨ β ∈ ∆, if and only if, α ∈ ∆, or β ∈ ∆, or both.

4. For any wff α, either α ∈ ∆, or ¬α ∈ ∆ (see Figure 8.6).

L
¬α

β

∆

α¬β

Figure 8.6: Language L and a maximal consistent set ∆

8.4 Proof of Step 2:

Let ∆ be a maximal consistent set. We define a valuation v such that

v(pi) = 1 iff pi ∈ ∆

= 0 otherwise

Here, pis are atomic wffs. Therefore , the question is what is the value for any
formula α ∈ ∆. That is, v(α) =? for any α ∈ ∆.

8.4.1 To show that v(α) = 1 iff α ∈ ∆

How to Prove: Strong Induction on complexity of the formula α.

Complexity 0: It is an atomic wff. So, directly follows from the definition.

Complexity n: Assumed that the statement holds for all wff with complexity
≤ n

Complexity n+ 1:
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Exercise: Complete the proof

We now have a model, which sets any maximal consistent set to 1.

Therefore, from Step 1, any consistent set Γ has a maximal consistent extension
∆. By Step 2, ∆ has a model, that is, v(∆) = {1}. So, as Γ ⊆ ∆, v(Γ) = {1}.
So, v is also a model of Γ. That means, any consistent set has a model.

8.5 Proof of Step 3:

Let Γ ` α, but Γ 0Ax α. Then Γ ∪ {¬α} is consistent, because, if Γ ∪ {¬α} is
not consistent, then Γ `Ax α.

So, by Step 2, there exists a valuation v, such that,

v(Γ ∪ {¬α}) = {1}
That is, v(Γ) = {1} and v(¬α) = 1

That is, v(α) = 0

That means, v sets Γ to 1 and α to 0. This contradicts the assumption that
Γ ` α, that is, v(α) = 1 if v(Γ) = {1}. Hence, completeness, i.e., if Γ ` α, then
Γ `Ax α.

8.6 Issues in this style of proof:

Problems in this proof are:

1. Mathematically there is no problem; it is a nice proof.

2. Computationally there is some problem, because, firstly, the valuation func-
tion v is not constructive. Secondly, checking consistency is not simple.

3. This is a typical mathematical theorem. There is no clear method given to
prove consistency of Γ′ns, as inconsistency may not reside in the surface.

There are some other points, like -

• In case of Modal logic, Γ ` α is complex and includes a relation R. So, to
prove completeness, we need to change at Step 3.

T Axiom: �α→ α. This means, if I know α, then α is true / α is a fact.

[Reference for completeness proof for Modal logic: Introduction to Modal
Logic by Hudges and Cresswell ].
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• There is an alternative proof: Kalmer’s proof.

• There is no quantification in Propositional logic. But in case of Predicate
logic, quantification (like ∀, ∃) exists, so, the prrof of completeness theorem
changes.

• What is the use of non-computational constructive mathematics in society
or real life or in computers?
– We never use irrational number or recurring decimal number in comput-
ers, we take a rational approximation.



Chapter 9

First order predicate logic/First
order logic (FOL)
Class 8: 15/11/2016

As before, we define logic as a pair (L, `).
Alphabet

• c1, c2, · · · (constant symbols)

• x1, x2, · · · (variables)

• f ij where i = 1, 2, · · · and j = 1, 2, · · · (function symbols)

• pij where i = 1, 2, · · · and j = 1, 2, · · · (predicate symbols)

• v,→ (logical connectives)

• ∀ (universal quantifier)

• ),( (left and right brackets)

Computers can not handle infinitely many symbols. So, to deal with this, use
c, x, |,#, f, p,v,→,∀, ), (. In the following way,

• c1 = c|, c2 = c||, · · ·

• x1 = x|, x2 = x||, · · ·

• f 2
3 = f ||###

• p23 = p||### etc.

Other connectives and quantifiers are: ∧,∨,∃. Here, (∃x∅) ≡ v ∀x
(v ∅), ∨, ∧ as in the case of propositional logic.
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9.1 Definitions:

9.1.1 Terms:

1. Any ci is a term.

2. Any xi is a term.

3. If t1, · · · , tj are terms, then f ijt1t2 · · · tj is a term.

4. Nothing else is a term.

Example 25 f 1
2 c1x1 is a term.

f 2
2 f

1
2 c1x1c2 is a term. An example of such term is (2 + x) × 3, where +,× are

two binary functions. It can be rewritten as ×(+(2, x), 3).

The subscript in the functions indicates the number of terms to follow. Writing
a term in this way ensures unique readability, that is only one way of reading.

9.1.2 Well Formed Foumula (wff)

Atomic: If t1, · · · , tj are terms, then pijt1t2 · · · tj is an atomic wff.

wffs: (1) Atomic wffs are wffs.
(2) If φ, ϕ are wffs, then (v φ),(φ→ ϕ),(∀xiφ) are wffs.
(3) Nothing else is a wff.

Example 26 1. p12c1c2 (example is 3 < 2, written as < (3, 2))

2. p12c1c2 → p11c1 (example is, 3 < 2→ 3 is prime).

Predicate is a relation. Here < is a two-place predicate (p12), “is prime” is
an 1 place predicate (p11) and 3, 2 are constants c1, c2 respectively.

3. Let us take the sentence, ‘If x > 10 and x < 15 then x is good’.

We can write this as (p12xc1 ∧ p22x1c2) → p11x1, where p12xc1 represents the
predicate x > 10, p22x1c2 represents x < 15 and p11x1 represents x is good.

Note:

• Superscript i on f ij and pij is used to differentiate between the functions and
the predicates, i.e enumeration of the jth place functions or predicates.

• Predicates stand for mathematical relations (unary, binary etc).
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• Functions are mathematical functions.

– There is an ongoing point of debate in mathematics on the necessity
of higher order language.

– A relation is included in another relation, i.e. “R1(x, y) is a sub-relation
of R2” can be stated in FOL. But, according to a group of mathemati-
cians, all situations, depicting about the relations/predicates, are not
expressible in FOL. For example, we can not write a wff for ∀f in FOL,
but it can be written by second order logic.

– Second order logic is used in mathematics.

– However, some mathematicians say that higher order language is not
essential. For example, we can replace ∀f with natural language “for
all f ”. Here using meta language, we extract the quantifier outside of
the predicate.

• The set of wffs is decidable. Given a string whether it is wff or not can be
checked by the machine.

• Axiomatic definition of turnstile (Hilbert type axiomatic system) is not the
only way. However, in this lecture we shall adopt the axiomatic method.

Exercise: Take complicated sentences and symbolize them.

9.2 Free and Bound variables:

A position of a variable in a wff is free/bound. Note that, a wff is a string, which
has finitely many positions (see Figure 9.1). In this figure, one variable x2 has
two positions in the string.

x2 x2
Figure 9.1: A wff (string) and its finitely many positions.

Bound:

1. The position just after a quantifier, e.g. - in (∃xφ) or (∀xφ), the variable x
is bound by the quantifier ∃ or ∀.

2. The formula after x (bound) is called the scope of the quantifier. As an
example, in (∀xφ), x is bound by ∀ and φ is the scope of ∀.
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3. Any position of x within the scope of the quantifier followed by x, is bound.
In (∀xφ), positions of x inside φ are bound.

Example 27 1. ∀x(x+ y = 5), where x is bound and y is free.

2. ∀x∃y(x+ y = 5), where x and y both are bound.

3. ∀x(x + y = 5) → ∃y(y < 0) where, x is bound, y is free in ∀x(x + y = 5)

and y is bound in ∃y(y < 0). So, for a variable in a formula, there can be
both free and bound positions. See Figure 9.2.

∀x(x+ y = 5)

bound free

∀x∃y
︷ ︸︸ ︷
(x+ y = 5)︸ ︷︷ ︸

scope of ∃ & y

scope of ∀ & x

bound

bound

1)

2)

3) ∀x(x+ y = 5)→ ∃y(y < 0)

bound free bound

Figure 9.2: Examples of free and bound variables.

Definition 40 For a variable x is said to be free/bound in a wff φ if and only
if there are some free/bound occurrences of x in φ. Note that, a variable can be
both free and bound at a formula.

Notation: φ(t/xi) stands for the wff obtained by replacing all the free positions
of xi in φ by the term t.

Example 28 Say, ∀x(x + y = 5) → ∃y(y < 0) ≡ φ. Then we can write
∀x(x + (2 × 7) = 5) → ∃y(y < 0) ≡ φ(2 × 7/y). Here, y is replaced by
2× 7 ≡ f 1

2 c1c2 (in formal language).

Note that, more than one free variable can be replaced simultaneously, i.e.
φ(t1/x1, t2/x2) as well as successively. For example, a wff φ(x, y, z) can be
simultaneously replaced as φ(t1/x, t2/y, z) and successively replaced by first
φ(t1/x, y, z), then φ(t1/x, y, z)(t2/y).
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A term is said to be closed if it has no variable. So, in case where term is not
closed, resulting formula by simultaneous and successive replacement may not
be same.

Definition 41 φ admits t for xi, if in φ(t/xi) all the variables in the term t

remains free.

9.3 Derivation of FOL

9.3.1 Axioms of FOL:

1. φ→ (ψ → φ)

2. (φ→ (ψ → ϕ)→ ((φ→ ψ)→ (φ→ ϕ))

3. (v φ→v ψ)→ (ψ → φ)

4. ∀xi(φ→ ψ)→ (∀xiφ→ ∀xiψ)

5. (∀xiφ)→ φ(t/xi) provided φ admits t for xi.

eg: ∀x (x < x+ 1)

φ

→ 2 < 2 + 1

φ(2/x)

, i.e, general to special/particular case.

6. φ→ (∀xiφ) provided xi is not free in φ. Here, xi -free or not present makes
this statement meaningless.

7. If φ is an axiom and xi is free in φ, then ∀xiφ is an axiom. This axiom
replaces another rule: rule of generalization (cf. Mendelson).

8. Nothing else.

9.3.2 Rule:

MP: φ,φ→ψ
φ

.

9.4 Define `Ax
:

` is defined as in the case of propositional logic.

Definition 42 Γ ` φ if there exists a chain φ1, φ2, · · · , φn of wffs such that

1. φn ≡ ψ
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2. any φi is either in the axioms, or in Γ or is obtained by the rule MP from
the previous wffs of the sequence.

Note:

• Constant, predicate, function symbols are called proper symbols, as these
vary from one FOL to another.

• These are syntactically specific.

• Interpretation varies from domain to domain even in a particular FOL with
one predicate symbol, one function and one constant.

• Without interpretation, we can not speak about truth or otherwise of a wff.

e.g. Some interpretations of p11c1: Say, in domain D1, c1 = c ∈ {a, c} and
the interpretation is shown in Figure 9.3a. Therefore, in this domain, p11c1
is true.

However, in domain D2, c1 = 5 /∈ {1, 3, 4, 6} (see Figure 9.3b). Therefore,
in this domain, p11c1 is false.

a b

c

p11

D1

c1 = c

(a)

p11

D2

1
2

3 4 5

6

c1 = 5

(b)

Figure 9.3: Two interpretations of p11c1

So, here the interpretations of the one place predicate are the subsets of D1

and D2.

• One place predicate is subset of the domain and two place predicate is
interpreted a subset of the cross product i.e. a binary relation.

• This interpretation is due to Tarski.

• The correspondence theory of truth is in syntactic form. Let us take an
example, “Snow is white”, i.e snow may not be ice, may be a name of
a cow. Therefore, interpretation depends on domain and same wff can
have different interpretation and truth values in different domains. See
Figure 9.4.
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D2

1 2

3 4 5

6

c1 = 2

a b

c

D1

c1 = a

p11c1
False True

snow in white
c1 p11

⇓

Figure 9.4: Interpretations of Snow is white.

In D2, there are 6 numerical values that represent 6 objects. Among these
objects 1, 3, 4 and 6 are white. They are kept in one domain. On the other
hand, a and c are white objects and are kept in another domain (as shown
in Fig. 9.4).

• There are always Infinite number of variables in a FOL.

• We can substitute the name of an object, not the object itself. So, inter-
pretation is not on the variable, interpretation is on the meaning of the
object.

• How to interpret a quantifier?

• All computer languages are context free. FOL is a context free language.

1. Grammar can be said as Formation Grammar , i.e. formation of the
language L

2. The formation of language and the derivation of one wff from another
together form syntax.

Task: Find a context free grammar that generates the FOL L (Formation
Grammar).

• Compilers decide whether a string is in L or not.



Chapter 10

Predicate Logic: Satisfiability
Class 12: Dated 25 - November - 2016

Example 29 Is x+ 2 < 5 a sentence?
The answer is ‘No’. because – (1) It has a free variable x; and hence (2) It does
not have a truth value, ie. truth value (T/F) cannot be assigned to it.

Now, to make it a statement, we have the following two options:

1. Replace the free variable x with an instance, like 4, that is, 4 + 2 < 5 is a
statement with truth value “False”.

2. Place a quantifier before the free variable to make it bound. Like

∀x(x+ 2 < 5) with truth value “False”.
∃x(x+ 2 < 5) with truth value “True”.

However, x+2 < 5 as well as the other three are wffs according to the formation
rules.

This implies that all wffs are not sentences. Variables are like pronoun of
natural language. Eg. - “He is good”. Here, as long as we don’t know who is
‘He’, it is not a sentence with the truth value T/F. In ontology, the analogy
is like putting a handkerchief on a seat and nothing on a seat. Handkerchief
acts as a placeholder. So, in natural language using pronoun is like putting a
placeholder; “— is good”, where ‘—’ is the placeholder.

However, we can not find the truth value of a wff without a domain. For
example, for the wff p12f

1
2c1c2c3, the truth value can be assigned, when the

domain is the set of numbers and the interpretation of the wff is 4 + 2 < 5.
Here, c1 = 4, c2 = 2, c3 = 5, f 1

2 is the two place function + and p12 is the
two-place predicate <.

We want to attach truth value to this formalization irrespective of interpreta-
tion. The wffs get values true or false or neither truth nor false through some
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domain.

10.1 Interpretation:

Interpretation can only be of a language. Here, the language is First Order
Language of the logic FOL (L,`). By an interpretation I of the FOL language
L, we mean the following:

• There is a non-empty set D, called the domain of interpretation.

• Each constant symbol c is associated with an element

I(c) ∈ D,where c is some constant symbol

• Each function symbol f ij is associated with a function

I(f ij) : Dj → D

• Each predicate symbol pij is associated with a j-ary relation

I(pij) ⊆ Dj

10.2 Notion of Satisfiability:

• Let I be an interpretation in the domain D.

• By s, we mean a sequence 〈d1, d2, d3, · · · 〉 on D.

This means, variable x1 gets d1, variable x2 gets d2 etc., d1, d2, d3, · · · are
taken from D.

• Given a term t, s(t) is an element of D defined as follows:

– If t is a constant c, then s(t) = I(c). [That is, the meaning of such a t
is independent of s and depends on I only.]

– If t is a variable, say xn, then s(t) = dn. [That is, the sequence s is the
assignment to the variables and xn is assigned the nth element of s.]

– If t is f ijt1t2 · · · tj, then

s(t) = I(f ij)(s(t1), s(t2) · · · s(tj))
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Example 30 f 1
2x1c1 is to be interpreted. Say, the domain is the set of numbers

and I(c1) = 2, I(f 1
2) = +. Then,

s(f 1
2x1c1) = I(f 1

2)(s(x1), s(c1)

= +(d1, I(c1))

= +(d1, 2)

Here, s(x1) depends on the sequence s and s(x1) is the first element of s.
Considering the first element of s in domain D as d1, we get +(d1, 2) as an
object of domain D. Then, we get the interpretation as d1 + 2.

Note: c1 and 2 are both symbols. Here, it is interpreted as if 2 is a real object.
This is a kind of deception. It is a point of debate in Mathematics. In Mathe-
matics, we can not escape the names and reach the real objects. For example, in
Figure 10.1a, all the symbols are used to represent the physical quantity ‘two’.
But, all these are names, not the actual object. Similarly, in Figure 10.1b, the
same astronomical object – planet ‘Venus’ is nicknamed as both morning star
and evening star. That is, same object has different names, and all are again,
symbols.

2

(a) Symbols representing ‘two’

Morning Star

Evening Star

∗

(b) Nicknames for the planet Venus

Figure 10.1: Names vs Objects in Mathematics

Formal language of Mathematics can be translated to many, different natural
languages. But, these will all be different symbols used in different languages.
So, whatever be the language, these are naming of the objects, not the real
objects.

10.2.1 s satisfies a wff φ:

Satisfiability is a binary relation. For a sequence s and a wff φ, the following
cases can happen:

1. If φ is atomic, say pijt1t2 · · · tj, then, s sat φ iff

(s(t1), s(t2), · · · s(tj)) ∈ I(pij)
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Here, (s(t1), s(t2), · · · s(tj)) is a j-tuple of domain I(pij) and I(pij) ⊆ Dj.

Example 31 Take a sentence x + 2 < 5, where x = 3. If ((3 + 2), 5) ∈<,
then x + 2 < 5 is satisfied by x = 3. Formally, x + 2 < 5 is the wff
p12f

1
2xc1c2, where I(p12) =<. The satisfiability (SAT) problem is to de-

termine whether a wff is satisfiable on some interpretation or not. In this
particular case we need to determine if there is an interpretation I and a
sequence s such that, (s(f 1

2xc1), s(c2)) ∈ I(p12). Let s(c2) = I(c2) = 5,
s(x) = 3 and s(c1) = 2. Then, s(f 1

2xc1) = +(3, 2). So, (+(3, 2), 5) /∈< for
x = 3. That is, it is not satisfied for x = 3 and satisfied for x = 1, 2. That
means, x + 2 < 5 is satisfied for some values of x and does not satisfy for
some values of x. So, p12f 1

2xc1c2 is staisfiable.

Note:

• Although s is infinite, we only need finitely many of them to give values
to the variables in a string which is finite.
• If the domain is infinite, there are infinitely many ways to give values
to the variables.
• Though we cannot talk about truth values of a formula with a free
variable, we can talk about its satisfiability. For example, if φ = x+2 <

5, then φ(3/x) is false. So the formula φ is not satisfied by a sequence
that assigns 3 to x. But, φ(3/x) it is a different formula than φ.
• We cannot go to truth without passing through the notion of satisfia-
bility.

2. s sat ∼ φ iff s does not sat φ.
s sat φ→ ψ iff either s does not sat φ, or, s sat ψ.

3. s sat ∀xiφ iff s(d/i) sat φ for all d ∈ D.
[This is universal quantification on xi, so only xi is changed, other elements
of the sequence remain unchanged.]

Example 32 ∀x1(x1 + x2 < 5).
Take s = 〈1, 3, · · · 〉, where x1 = 1, x2 = 3 and so on. So, s sat ∀x1(x1+x2 <

5) implies, x2 is fixed with the value 3 and on x1, all the possible values are
to be assigned from the domain. However, in sequence s, x1 is also fixed.
So, we need scope to change x1 in all the elements of the domain. This
notion is s(d/1), meaning “d replaces 1st element of s”, where, d ∈ D.
So, for all d, generate a set of sequences,
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s(d/1)

...

If s = 〈1, 3, 2, 2, · · · 〉, s(d/1) = 〈d, 3, 2, 2, · · · 〉 and so on.

In this way, universal quantification is applied. If we have to evaluate
∀xi∀xjφ, we need to apply one quantifier at a time.

4. s sat ∃xiφ iff s(d/i) sat φ, for some d ∈ D.

Definition 43 A wff φ is true with respect to an interpretation I iff s sat φ
for all s over the domain of interpretation.

Definition 44 A wff φ is false with respect to an interpretation I iff s does not
sat φ for any s over the domain of interpretation.

If a wff is satisfiable for some assignments and not satisfiable for some other
assignments, then it is neither true nor false. This theory of satisfiability is the
contribution of A. Tarski. This theory is with respect to the Notion of Truth in
Formal languages. The statement x+ 2 < 5 is neither true nor false.

Note: This problem of satisfiability is of real importance. In predicate logic, it
is needed to check all possible domains. So, it is in general undecidable.



Chapter 11

Satisfiability: continued
Class 14: Dated 2 - December - 2016

In the previous class we have learned,

1. φ is atomic formula say, P i
j t1t2 · · · tj, then s sat φ if and only if (s(t1), s(t2),

· · · , s(tj)) ∈ I(P i
j ).

2. s sat ¬φ if and only if s does not satisfy φ.

3. s sat φ→ ψ if and only if s does not satisfy φ or s sat ψ.

4. s sat ∀xiφ if and only if s(d/i) sat φ for all d ∈ D.

From the above four definitions, we can derive,

• s sat (φ ∧ ψ) if and only if s sat φ and s sat ψ

• s sat (φ ∨ ψ) if and only if s sat φ or s sat ψ

• s sat ∃xi φ if and only if s(d/i) sat φ for some d ∈ D

• φ is true w.r.t I if and only if s sat φ for all s

• φ is false w.r.t I if and only if s does not satisfy φ for all s

Definition 45 A wff φ is closed iff it has no free variable.

Example: For example, say φ: x < 2. There is a free variable. Hence not
closed. If φ(3/x): 3 < 2, then it is closed as it has no free variable. Some other
example are, ∀x(x < 2), ∃x(x < 2) - all these are closed and these are either
true or false.

Proposition: A closed wff is either true or false with respect to any interpre-
tation.
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Either all the sequences satisfy the wff or all the sequences does not satisfy if
the wff is closed. So, the wff is either true or false.

x < 2 is not a statement in mathematics.

We have always learned from school text books that, (x + y)2 = x2 + 2xy +
y2 where x, y are variables, ‘+’ is the function symbol, ‘=’ is the predicate and
2 is the constant. But the equation is actually a closed wff and it should be
written as, ∀x ∀y ((x+ y)2 = x2 + 2xy + y2).

Definition 46 Γ ` φ, iff for all interpretation I, if every member γ of Γ is true,
then φ is also true. (Semantic Consequence relation).

• “Γ ` φ if and only if Γ `Ax φ” - does it hold? – This is actually completeness
issue of predicate logic.

11.1 Categorical Proposition

Universal:

1. All men are mortal (universal affirmation): ∀x (M(x)→M0(x))

2. No man is mortal (univesal negation): ∀x (M(x)→ ¬M0(x))

Particular:

3. Some men are mortal (Particular Affirmation): ∃x(M(x) ∧M0(x))

4. Some men are not mortal (Particular negation): ∃x(M(x) ∧ ¬M0(x))

According to Aristotle, these are the basic propositions by which we can for-
malize any natural language.

Following is the derivation of universal negation.

∀x (M(x) → ¬M0(x)) ≡ ∀x (¬M(x) ∨ ¬M0(x)) ≡ ∀x ¬(M(x) ∧M0(x)) ≡
¬∃x ¬¬(M(x) ∧M0(x)) ≡ ¬∃x (M(x) ∧M0(x)) ≡ direct negation of ‘Some
men are mortal’.

Again, the particular negation can be derived by the following.

∃x(M(x) ∧ ¬M0(x)) ≡ ∃¬x(M(x) → ¬¬M0(x)) ≡ ∃x¬(M(x) → M0(x)) ≡
¬∀x¬¬(M(x) → M0(x)) ≡ ¬∀x(M(x) → M0(x)) ≡ direct negation of ‘All
men are mortal’

If there exists some sentences which are derivable within a theory and where
one is not a contradiction to another, then the fact is known as consistency.
Non-euclidean geometry is consistent i.e. non-contradictory.



72

Now the question is whether number theory is consistent or not. Or we can
ask whether the system of natural numbers N is consistent or not. How do we
decide that actually we shall never get a φ: φ is a theorem and ¬φ is a theorem.

11.2 Gödel′s Theorem

If N is consistent, then N can not prove it.

This is the second incompleteness theorem. ‘N is consistent’ has the represen-
tation in the language of N i.e. there is a wff which, if interpreted, results in
‘N is consistent’.

If we extend N to N′ and N′ can prove N’s consistency, then there will arise a
question whether N′ is consistent or not. Gödel′s second incompleteness theorem
will then be applicable to N′ and it will continue to N′′, N′′′ , · · · .

11.3 Euler’s representation of statements in Set theory

It is the representation of statements what brain wants to see cognitively.

M

M0

All men are mortal

M
M0

No man is mortal

Figure 11.1: Euler Representation of universal proposition

M

M0

M

M0

Some men are mortal Some men are not mortal

Figure 11.2: Euler Representation of particular proposition

Here, M is the representation for ‘Men’ and M0 is the representation for ‘Mor-
tal’.

In Euler’s representation, there lies some problems. If the pictorial representa-
tion be like Figure 11.3, then what should we understand by this representations?
Because of the problem, Venn modified the representation.
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Or

Figure 11.3: Problem in Euler Representation

11.4 Venn Diagram

The Venn diagram for the Universal propositions are given in Figure 11.4. The
lines shades inside the circle represents the empty area.

Empty

M M0

All men are mortal No man is mortal

M M0

Figure 11.4: Venn diagram for universal proposition

Venn represented it in such a way that each curve would be divided into two
parts by another curve. Figure 11.5 shows how each of the three curves are
divided into two parts by every other curve.

1

2
3

4

5 6 7

Figure 11.5: curves of venn diagram representation

After Venn, Boole algebrized the propositional logic. Scientist Philosopher
Pierce marked the empty and non-empty zone of the curves more clearly in his
representation.

11.5 Pierce Diagram

Pierce marked the empty zone by ‘0’ and non-empty zone as ‘x’. Figure 11.6a
and Figure 11.6b show the Pierce representation for universal propositions and
particular propositions respectively.
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o
o

All men aremortal Noman ismortal

(a) Pierce Representation of universal proposition

X

Somemen aremortal Somemen arenot mortal

X

(b) Pierce Representation of particular proposition

X

X

(c) Pierce Representation of disjunction

Pierce also tried to represent disjunction pictorially. Figure 11.6c shows the
area ‘x–x’ that represents either a part including one x is non-empty or the part
including another x is non-empty.



Chapter 12

First Order Logic

12.1 Square of Opposition:

∀x(Mx→Mox)

(All M is Mo)

M Mo

empty

∼ ∃x(Mx ∧Mox)

(No M is Mo)

M Mo

≡ ∀x(Mx→∼Mox)

∃x(Mx ∧Mox)

(Some M is Mo)

M Mo

∼ ∀x(Mx→Mox)

≡ ∃x(Mx∧ ∼Mox)

(Some M is not Mo)

M Mo

non empty

Contrary

Subalterm Subalterm

Contrary

• Contrary: They can not be true together, but may be false together.

• Subcontrary: They can not be false together but may be true together.

• Subaltern: If the above corner is true then the corresponding lower corner
is also true.

12.2 FOL:

• Sentences (closed wff) are either true or false.
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• A wff is neither true nor false implies that it has a free variable but converse
is not true.

Example 33 p11x1 → p11x1, Here x1 is free variable, but this formula is
always true.

a
I(p11)

D

In this assignment, p11x1 is not satisfied, so, p11x1 → p11x1 is satisfied.

In either case, this formula is satisfied. So, it is a valid wff and for all
sequences it is satisfied, so it true.

Example 34 p11x1 ∧ (∼ p11x1)

For all assignments, this wff is false although x1 is free here.

That means, even if free variable is there a wff can be true or false.

• Γ ` φ holds if and only if for all interpretations I, if all the wff in Γ are
true, then φ is also true.

That means, if all wff in Γ are satisfied for all the sequences, then φ is also
satisfied for all the sequences.

• Γ `′
φ

If all the wff in Γ are satisfied by an assignment s, then φ is also sat by s.

Note:

– Count only the sequence which satisfies all wff of Γ.
– Consequence with definition more relaxed.

If Γ `′
φ then Γ ` φ, converse does not hold

– If a sequence satisfies Γ then it satisfies φ. And if all sequence are true
all sequence are satisfied. So, Γ ` φ.

� Question: Γ `Ax φ iff Γ ` φ ?

Answer: This holds, in case of sentences.
If Γ `Ax φ then Γ ` φ for all wff φ. The converse can be obtained only for
sentences. The soundness holds always, but completeness holds when Γ, φ are
closed wff.

Γ `Ax φ iff Γ `′
φ holds without restriction.
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12.2.1 Soundness:

If Γ `Ax φ then Γ ` φ.
Proof: Consider

1. All the axioms are true in any interpretation.
2. M.P preserves truth. i.e, if φ, φ→ ψ are true in some I then ψ is true in I.

Let Γ `Ax φ, that is,
α1
α2

αn(≡ φ)

.

.

.

Let in I, all members of Γ be true, we want to see, φ is true in I.

Now, if the elements of derivation α1 is an axiom or a member of Γ or obtained
by MP. That implies, if it is an axiom, by (i) it is true in all interpretations, so
in I. Otherwise, it is true in I. Similarly α2 is true in I. From α3 onwards, by
using (ii), i.e MP, it is true in I. So, Γ ` φ (Soundness proved).

12.2.2 Completeness:

If Γ ` φ then Γ `Ax φ where Γ ∪ φ contain only sentences.

The proof is omitted.

12.2.3 Variations of FOL

• FOL with equality prediction: t1 = t2 (where ‘=’ is binary relation)

• Instances of FOL: – Number Theory (Chapter 13)

– Group Theory



Chapter 13

Prerequisite of Number Theory
Class 14: Dated 20 - December - 2016

Without ‘=’ (equality) mathematics is not possible except in one/two cases,
e.g. theory of order relation (Fig. 13.2).

13.1 Foundation of Mathematics:

There are two basic things in Mathematics:

1. Set theory
2. Logic

An example of first order theory is shown below viz. a Group structure.

13.1.1 Group

A group is a non-empty set G with a binary operation (.) and a 0-ary operation
(e) satisfying the following conditions (also known as Group axioms):

1. ∀x∀y∀z((x.y).z = x.(y.z))

2. ∀x(x.e = x ∧ e.x = x)

3. ∀x∃y(x.y = e ∧ y.x = e)

Here, all these three wffs are closed wffs and the 0-ary operation (e) is the
identity object. As, ‘=’ is a binary operation, so, x.e = e.x = x is not proper,
even computer can not take it. It is actually x.e = x ∧ e.x = x. Similarly, for
the 3rd axiom also, writing from both side with ∧ is necessary; otherwise, left
and right identity have been different and defined differently.

So, in this first order logic, the following three proper symbols are required
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i) Constant e

ii) Function symbol (·)

iii) Predicate symbol (=)

Here, ‘·’ is a binary (two place) function f 1
2 and ‘=’ is a binary predicate p12.

Note:

• After ‘∀’ only variables can be placed, so, ∀x, ∀y, ∀z means x, y, z are
variables. Hence, there is no need to say x, y, z ∈ G for finite as well as
infinite case.

• For infinite case, we can not explicitly describe the wffs using every ele-
ment/object, so, there is no other way to describe the wffs without using
variables.

• The variables in the three axioms are bounded.

• If a binary function f is defined over a set G, that means, G is closed under
the function f : G×G→ G. Here, all the operations are defined over a set,
so, by definition closed property is satisfied – there is no need to mention
closed explicitly.

However, in case of interpretation, we need an actual group G′ which must
be closed under the three axioms, that is, these wffs are to be true in G′.

13.1.2 Function Correspondence

To define a function, we use the equality operator (=). Of course, functions are
relations, a n-place function is a (n+ 1)-place relation, whereas, special kind of
relations are functions. Relations are more fundamental.

For example, the wff ∀x(x.e = x∧ e.x = x) is actually ∀x(·(x, e, x)), where · is
a 3-place relation which relates (x, e) to x, or (x, e, x) taken in this order ∈ ·.
We always write 2+3 = 5. But this expression actually stands for ‘+(2,3)→5’

or ‘(2,3,5)∈+’. In the first expression, → stands for corresponds to. In the
second expression, + is considered as a 3-place relation.

• The theory in which the wffs are written in terms of equation is
known as equational theory.

So, there is a language and three formulae or group axioms. These group axioms
may have models. All of the models that have the group axioms or closed wffs
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5
(2,3)

(3,2)

(1,4)

+ N
N ×N

Figure 13.1: A binary function + : N× N→ N is same as the ternary relation + ⊆ (N× N)× N

are called groups. These models are characterized by the axioms. Obviously,
group axioms are not groups.

However, if there is no such model, then the axioms are inconsistent, but such
axioms can be written. Note that, in the definition of group axioms, G is not
mentioned. So, G is variable over the models or groups. In fact, G refers to any
of these models.

13.1.3 Non-equational Theory

Example of non-equational wffs/axioms are:

• ∀x(x < x)⇔ (∀x(p12xx))

• ∀x∀y∀z(x < y ∧ y < z → x < z)

where ‘<’ is a binary predicate. Now, to get the model or interpretation char-
acterized by these axioms, consider Figure 13.2. Here relation R is defined over
set A which satisfies these axioms.

R

Ordered set
A

Reflexive

Transitive

Figure 13.2: An ordered set with ordering relation R

Observe that, R is reflexive and transitive, so, the relation is called an ordering
relation and the corresponding set is called an ordered set. The language for
this model has only one binary predicate symbol, but no constant or equation.
This is perhaps the only example of non-equational structure of wffs.
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However, assuming general set as model means at least one set exists in which
the properties hold; that is, the axioms are consistent. For instance, all problems
given in any mathematics text book considers general set as model.

13.1.4 The notion of Semantic vs Syntactic

Now, consider Γ be a set of wffs in a first order language. Suppose that, Γ does
not have a model (semantic). Then, Γ is inconsistent, i.e. there is a wff α such
that Γ ` α and Γ ` ¬α (syntactic). To prove the syntactic part, we do not need
any mathematical model. It can be derived logically from the axioms.

Theorem 7 : Γ is consistent (syntactic) if and only if Γ has a model (semantic).

This is also a statement of completeness theorem. When Γ is a closed wffs, then
the statement is an essence of the first order language completeness theorem.
Observe that, Γ is not specified in the theorem. But, we can say that, if we get
a model, then the set Γ is always consistent.

Examples in any mathematics textbook are actually models. Hence, while
defining a new definition/concept, one needs to give an example to prove its
consistency. Therefore, definitions are abbreviations, while new definition needs
a model.

We can now re-look at the basic concepts in Mathematics:

1. Axioms (Logic)
2. Model (Set)
3. Consistency proof (Logic)

13.2 First order language with equality (=):

Here, we are enhancing the first order language by incorporating a binary rela-
tion or two-place predicate symbol “=”. So, in stead of the predicate pk2, ‘=’ is
to be used.

wffs:
• = t1t2 where ‘=’ is the predicate symbol and t1, t2 are terms. It is atomic,
with no quantifier, conjunction or disjunction. By convention, we write it as
t1 = t2.

• We need some additional wffs as axioms for equality.

(i) ∀x(x = x) –(1)
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(ii) ∀x∀y(x = y → (φ(x, x)↔ φ(x, y/x))) – (2)

If two elements are equal, then whatever can be said about the 1st element can
be said about the 2nd element and vice-versa. In other words, if two elements
are identical, then they have the same properties.

Note: φ(x, x) means wff φ where variable x can occur free in more than one
places, whereas, φ(x, y/x) means the formula obtained where some of the occur-
rences of x are replaced by y.

Note that, “all properties of two elements are matched” implies, they are equiv-
alent, but not necessarily same. So, how can we define the identity/same? If
two objects have same properties, how can we know whether they are same?
For this, we have the following principles given by Leibniz:

• ∀x∀y(x = y → (φ(x, x) ↔ φ(x, y/x))) for all φ - this is known as indis-
cernibility of identical.

• ∀x∀y(x = y ← (φ(x, x) ↔ φ(x, y/x))) for all φ - this is known as, identity
of indiscernibles.

But, is there any other way to infer sameness? By the two axioms ((1) and (2))
written above using predicate logic axioms, this can be proved –

Justification of equality:

∀x∀y(x = y → y = x) (commutativity)

∀x∀y∀z(x = y ∧ y = z → x = z) (transitivity)

∀x∀y(x = y → t(x) = t(y/x)) [e.g.(x = y)→ (x2 = y2)]

∀x∀y(x = y → (p11x↔ p11(y/x))) [e.g. (x = y)→ (x.x = x.y)]

where t(x) is a term in which x occurs.

From Axiom (2) we can get:

∀x∀y((x = y ∧ φ(x, x))→ φ(x, y/x)) [Using α→ (β → γ)↔ (α ∧ β)→ γ].

This means, if x = y and x has the property φ, this implies, y also has the
same property φ. This property is called saturatedness property.

Note:

• Number theory axioms are proper axioms (see next chapter).

• In the intuitive definition of set, the presumption is the notion of identity.
For instance, if a, b ∈ A, where A is the set, a 6= b.

• However, in many occasions, having same property does not mean the ob-
jects will be equal:
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– Although Morning star and Evening star refers to the same star,

Morning star 6= Evening star

– Suppose ‘2 + 3 = 5’ is fact(a) and ‘4 + 1 = 5’ is fact(b). Here, these
are two different facts with different property. How shall you determine
that they are same facts? In the first case, 3 is added to 2, and in the
second case 1 is added to 4. So, intuitively they are not true, but, by
the property of indiscernibles, mathematically they are equal.

• In Physics, there is no notation as one electron, where electron can be
considered as model. The filed Quantum Set Theory deals with the objects
that are distinct but not distinguishable.

• Although in mathematics there is no individualism, but in physics, we apply
this theory to individuals. But some questions still remains:

– Can a property of individual be really applied to the collection?

– Can study of individual reflect collectivism? Or, we do it as we do not
have any other way?



Chapter 14

Number Theory-I
Dated 30 - December - 2016

14.1 First Order Theory (FOT)

The base of FOT consists of

1. First Order Logic (FOL)

2. = (equality),

i.e. FOL with ‘=’ and some closed wffs as proper axioms constitute FOT.
Depending on the proper axioms, the theory changes. Constants, functions,
predicate symbols are changed depending on the theory. One example of FOT
is Number Theory.

14.2 Number Theory

In number theory, we need,

1. Proper symbols of the language:
a) a constant c
b) One 1-place function symbol and two 2-place function symbols: f11, f21,
f2

2

c) equality ‘=’

2. Other symbols:
a) variables (enumerately many)
b) ¬, →, ∧, ∨

84
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c) ∀, ∃
d) (, )

Convention: a) instead of ‘c’ we write ‘o’ b) instead of f11, f21, f22 we write
′, +, ., c) for equality we write ‘=’

Therefore, f11c is equivalent to c′. Following are some examples of terms using
the above conventions.
a) o
b) o′, o′′, ...
c) o′ + o′′ ...
d) o′.o′′ ...
e) (o′ + o′′).o′′′

Function f1
1 is called successor function, f21 is called addition function and

f2
2 is called multiplication function.

In pure Peano axioms, successor function and constant c is used. Currently
we are not going to discuss pure Peano axiom. Instead we shall discuss about
number theory with c, f11, f21, f22.

14.3 Proper Axiom:

• N1: ∀x∀y (x′ = y′ → x = y):It is a closed wff. It means two different
numbers can not have the same successor.

• N2: ∀x (x′ 6= 0) (0 is not the successor of any x)

• N3: ∀x (x+ 0 = x)

• N4: ∀x∀y (x+ y′ = (x+ y)′)

• N5: ∀x (x.0 = 0)

• N6: ∀x∀y (x.y′ = (x.y + x))

if we want to write m+n, then the following scenario will appear. (Fig. 14.1)

And another axiom has to be mentioned in this context which is Induction
Axiom.
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m + n

n = 0 n 6= 0

m (by N3) m+ r′

(m+ 0)′′′′′′

successor of m′′′′′

Figure 14.1: Understanding the successor

14.4 Induction Axiom:

• N7: For any wff formula φ(x), the following wff is an axiom. (φ(0/x)∧∀x(φ(x)→
φ(x′/x))) → ∀xφ(x) for any wff φ(x).

The induction axiom is a closed wff.
Standard understanding of induction: If 0 has a property φ and whenever
x has a property φ and its successor x′ has φ then every x has the property φ.
This is the meaning of N7.

Theorem 8 : ∀x(x+ 0′ = x′)

We know what a successor is. But we don’t know how to get that successor.
It can be proved by the proof of the theorem.
Demonstration:

1. N4: ∀x∀y (x + y′ = (x+ y)′)

2. ∀x(x+ 0′ = (x+ 0)′) (Specialization rule (spec.))

3. (x+ 0′ = (x+ 0)′) (Spec.)

4. ∀x(x+ 0 = x) (N3)

5. x+ 0 = x (Spec.)

6. x+ 0′ = x′ (by Substitutivity, 5, 3)

7. ∀x (x+ 0′ = x′) (generalization)

In specialization, the quantifier is removed. In generalization the quantifier is
added.



Chapter 15

Number Theory - II
Class 14: Dated 2 - December - 2016

Group Theory, Number Theory are the examples of FOT.

15.1 A Mathematical Theory (e.g. Group Theory)

1. A non-empty set plus some finite number of properties

2. Some operations and relations

Properties are the properties of operations and relations. For example, addition
operation is the operation of Number Theory such as

1. ‘+’ is commutative

2. ‘+’ is associative.

This is how by using symbolic and non-symbolic language, we can form rules.
Mixture of symbols and natural language is a typical feature of scientific fields.

Usually properties are finitely many, whereas, instances of the properties are
infinitely many.

According to Hilbert, we can build entire mathematics based on the basic
axioms or some finite properties. Axioms are intuitive and their truth values are
determined.

S

Finitistic Program
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Suppose we have written a meaningful sentence S without knowing whether
it is true or false. The finitistic program in the above figure contains finitely
many information in the starting axioms and the methods are finitistic. Hilbert
believed that there can be such a program from which any mathematical sentence
S is either derivable or its negation is derivable.

Gödel said that whatever be the finitistic programme, an S can always be
found where neither S nor ¬S can be derivable from the finitistic program.

15.2 Formal Theory of Number Theory N

FOL:

1. o

2. f11, f21, f22

3. = (predicate symbol)

o,
f 1

1, f 2
1, f 2

2

=

Proper Symbols

It also includes variables
1. x1, x2, · · · .
2. ¬, →, ∧, ∨
3. ∀, ∃, (, )
Atomic formulae with these symbols make non-atomic formulae.

15.3 Problem in Induction Axiom

For finite domain, we can verify the axiom. But for infinite domain we can not
verify φ(x). Then what is the justification of φ(x) to be true?

Intuitionists say – give an algorithm; only then we can verify or establish φ(x).
This is why computer scientists need an algorithm. Although constructivists do
not believe in induction hypothesis.

Way to use induction axiom:
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• First we need to derive φ(0/x).

• Then we prove ∀x(φ(x)→ φ(x′/x))

• Then ∀xφ(x) is obtained

15.4 Proof of ∀x∀y(x′ + y = x+ y′)

Say, φ(y) ≡ (x′ + y = x+ y′) (We indicate the free variable y in this case)

Now we shall see whether we can establish φ(0/y). Next we shall see whether
we can establish ∀y(φ(y) → φ(y′/y)). If these two cases can be establish then
by using induction axiom we will be able to say, ∀yφ(y) is true i.e. ∀yφ(y) ≡
∀y(x′ + y = x+ y′).

Therefore, we need to get φ(0/y). We will see whether x′ + 0 = x+ 0′.

1. ∀x(x+ 0 = x) (N3)

2. x′ + 0 = x′ (Spec.)

3. x+ 0 = x (Spec.)

4. (x+ 0)′ = x′ (Substitution rule)

5. (x′ + 0) = (x+ 0)′ (2, 4 transitivity of equality)

6. x+ 0′ = (x+ 0)′ (N4 Spec.)

7. x′ + 0 = x+ 0′ (5, 6 transitivity)
Now we have to show, ∀y(φ(y) → φ(y′/y)). (Deduction Theorem says, if
from α we get β then we can say {α} ` β i.e. ` α → β). Here we derive
φ(y′/y) from φ(y) from deduction theorem.

8. φ(y) is x′ + y = x+ y′ (Induction hypothesis or assumption)

9. x′ + y′ = (x′ + y)′ (N4 Spec.)

10. x′ + y′ = (x+ y′)′ (8, 9 Substitution)

11. x+ (y′)′ = (x+ y′)′ (N4 Spec.)

12. x′ + y′ = x+ (y′)′ (10, 11 transitivity)

13. (x′ + y = x+ y′) → (x′ + y′ = x+ (y′)′) (By deduction theorem)

14. i.e. φ(y)→ φ(y′/y)

15. ∀yφ(y)→ φ(y′/y) (Generalization of predicate logic (Gen.))
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16. ∀yφ(y) (induction axiom)

17. ∀x∀yφ(y) (Gen.)

15.5 Internal and External Negation

0 1 = 0 and ` 1 6= 0 are two different statements. When we write ¬(1 = 0) then
‘¬’ is called internal negation and it is inside the language. But when we write
‘0 1 = 0’, it is called external negation.

Let us give an example in natural language to understant this.
Example: A is dishonest. This is an internal negation.
If we say ‘It is not that A is honest then it is an external negation. The internal
negation is stronger than the external negation. Therefore, internal negation is
called strong negation and the external negation is called the weak negation.

15.6 Exercise

Prove that ` 1 6= 0.



Chapter 16

Decidability
Dated 03 - February - 2017

16.1 Introduction

Statement: A set A is decidable if and only if there is an effective procedure
for deciding whether or not any given object ‘a’ is or is not in A.
However, this statement has the following problems:

1. Circularity: There is a word ‘deciding’ in the definition of decidability.

2. The words ‘effective’ and ‘procedure’ are not yet mathematically defined.

stmt1

stmt2

stmtn

Conclusion

Figure 16.1: An effective procedure

In a layman’s view, procedure means effective procedure. But, in mathematics,
effective and non-effective procedures are different. In computer science, the
term ‘effective’ is a formal mathematical property of procedures and an effective
procedure is an algorithm. Mathematically, an effective procedure is a derivation
having a set of mathematical statements (wffs), where each statement has either
“Yes” or “No” as the truth values. In an effective procedure, every step is well-
defined and follows from the set of Axioms or from the previous statements by
using some rule (M.P.). See, for example, Figure 16.1.

In real life, almost all procedures are non-effective with fuzziness, ambiguity
and jump in statement. For example, in medical science, a doctor’s view is
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always subjective and does not follow the formal definition of effective procedure.
In fact, almost 90% of the decisions taken by any human in his/her lifetime are
non-effective with jump in between the arguments.

Remark: During this lecture, we have a doctor participant among us. His view
on this context is, however, opposite of us.

16.2 Effective procedure and Turing Machine

To mathematically define decidability and effective procedure, we take help of
Turing Machine. In fact, the famous work by Alan Turing and Alonzo Church
on the solution of Hilbert’s EntscheidungsProblem was on the precise meaning
of effective procedure. This work is known as the Church Turing Thesis (1936).

A
a

a

Y

M Y (if a ∈ A)

N (if a 6∈ A)

M1

A
a

N

M2

+=

Figure 16.2: Effective procedure in terms of Turing Machine

Now, let us construct a machine M which integrates two machines M1 and
M2. Here, the machineM1 can decide whether a ∈ A and the other machineM2

can decide whether a ∈ Ac. In this case, the effective procedure isM = M1+M2

(see Figure 16.2). Therefore, we redefine the notion of decidability as follows:

Definition 47 Decidable Set: If a set A and its complement Ac can both be
decided, then it is decidable.

Definition 48 Enumerable Set: A set is called enumerable if it satisfies the
following properties:

1. It is an infinite set
2. The elements of the set can have a one-to-one correspondence with the

elements of N
3. The elements of the set can be written as 1, 2, 3, · · ·

A set is countable, if it is either finite or enumerable.

Definition 49 Recursively Enumerable: A set A is said to be recursively
enumerable if there exists a procedure that can pick up any element within A.
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Definition 50 Recursive: A set A is said to be recursive if there exists a
procedure to determine whether a ∈ A and a ∈ Ac.

Note:

• The notion of decidable and recursive are practically same.
• A Turing machine can accept both the recursively enumerable and recursive
languages. That is, we can build Turing machines for both the recursive and
recursively enumerable languages. However, the general idea of algorithms
refers to the recursive languages where the Turing machine halts for every
input.
• Obviously, the set of recursive languages is a proper subset of the set of
recursively enumerable languages.
• In terms of computability theory, a function is effectively calculable if and
only if it is partially recursive. Whereas, a function is recursive if and only
if it is effectively calculable and also a total function. Here, the notion of
computability and decidability are the same.

To declare a set as recursive, we need to determine whether an element a
belongs to the complement of the set. However, complement of a set is defined
with respect to the universal set.

16.3 Universal Set

In classical set theory, the universal set is a closed set and predefined with respect
to domain of inputs we are going to choose from. So, we can check whether an
element belongs to a particular set of the closed universe or outside of that set
in the universe.

However, the definition of closed universe in the classical set theory has long
been a point of philosophical debate. The famous paradox proposed by Russell,
also known as Russell’s Paradox indicates this problem in the classical set theory.

To resolve this issue, formal set theory redefines the notion of universal set. It
has been proved that “there is no universal set”. So, to find the complement of
a set, the concept of relative universe is used. In this case, the complement is
defined relative to another set (see Figure 16.3 for example).

The model of the class of all (actual) sets are denoted by ∨ (see Figure 16.4).
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A B
A

B

Figure 16.3: Relative universe and the set A \ B: objects of A which are not in B

∅ (null set)

Figure 16.4: The model of the class of all sets

16.4 Decidability in Logic

In logic, a theory (T ) is a set of closed wffs. Now, to be decidable, T should be
subset of some set, which is the set of all wffs.

T

All wffs

Definition 51 A theory T is complete, if and only if, for any closed wff φ, either
T`Axφ or T`Ax¬φ.

Recall that, in first order predicate logic Ax is the set of axioms and T`Axφ

means there exists a derivation like of Figure 16.5 which derives φ from the
premise T using the set of axioms Ax.

However, not all theories are complete. In mathematics, incomplete theories
do exist. If a theory T is complete, we have algorithm(s) to scan both inside
and outside of T .

Theorem 9 : If a theory T is complete, then it is decidable.

Note: This statement is related to the complement of Gödel’s incompleteness
theorems. But, before going to the proof of this theorem, we need to have the
following prerequisites.

Theorem 10 : The following statements are true for a decidable theory of logic:

1. The set {φ | T`Axφ} is effectively enumerable. That means, a machine
exists which can give the nth member of the set; or, in other words, an
algorithm to decide the nth member exists.
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α1

α2

αn ≡ φ

From T , or from Ax or by MP

Figure 16.5: T`Axφ in FOL

n φn φ1, φ2, · · ·

2. Further, this set {φ | T`Axφ} is technically infinite, because, if we can decide
φ, then ¬¬φ can be decided and so on. Here, each of φ, ¬¬φ, ¬¬¬¬φ is a
different string.

3. The set of alphabet is finite.
4. The set of all finite strings generated by this alphabet is enumerable.

All finite string

enumerable

5. Subset is either finite or enumerable.
6. We know φ is enumerable. Now, the theorems of T are effectively enu-

merable. Here, to be effective, we need to have an algorithm to define the
enumeration of the theorems. A theorem can be written as the concatena-

φ

stringsα1

α2

Corresponding to a theorem

Figure 16.6: Derivation of a theorem

tion of the strings taken as steps of its derivation, like α1α2α3 · · · which is a
finite string of finite strings. Hence, it is a number. So, whether something
can be derived from T is to be tested by a machine and then a numbering
is done.
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As an example, let us construct an algorithm which gives the nth theorem of T .
So, the input to the algorithm is n and T . So, the theory T can be defined as
the set T ={φ | T`Axφ}. This set is closed with respect to derivation.

We can define another set T c. We need to show that T c is also effectively
enumerable.

Theorem 11 : T is decidable, if T and T c are both effectively enumerable.

Machine

Yes

No

n

m

φ

This implies, T `Ax φ is decidable, then there exists a machine which, given an
enumeration n for which it is a theorem of T ; or m, for which it is non-theorem
of T c. Now, we can prove Theorem 9:

Proof :

Case 1: Assume T to be consistent. Therefore, for any φ, either T`Axφ or
T`Ax¬φ (from completeness).

In the first case, φ is located in the theory T by the previous result or obser-
vation. Whereas, in the second case, the procedure locates ¬φ in T . So, (the
algorithm will decide that) φ is in T c (from consistency).

Algorithm
¬φ Yes

Figure 16.7: Algorithm to decide the T c set

Note that, the completeness of T is the sufficient condition for decidability of
T .

Case 2: Let T is inconsistent, then {φ | T`Axφ} = L.
From the classical set theory, if every set is a inconsistent, then every formula

is derivable. So, the effective procedure has to find all elements within T , as T c

is empty. �



Chapter 17

Gödel’s Incompleteness Theorem
Class 18: Dated 10 - February - 2017

History:

1930: Ph.D thesis proving completeness of Russell’s Principia Mathematica sys-
tem. The completeness theorem he proved is:

If Γ ` α, then Γ `Ax α, where Γ is the Principia Mathematica system.

Special Case: Taking Γ = φ, that is, no premises, only axioms in Γ, the
completeness theorem is

If ` α, then `Ax α

That is, if α is true (a tautology) in all interpretations (valuations), then
α can be derived from the axioms. That is, if α is tautology from seman-
tic point of view, then it is derivable from syntax. This is the proof of
completeness.

1931: Incompleteness theorems. Kurt Gödel gave the idea about these theorems
first in an informal meeting in a restaurant in Austria on the eve of a con-
ference, where both he and David Hilbert were speakers. At the time of an
informal meeting outside the conference-sessions, John. von Neumann was
present, and probably he gave Hilbert hints about Gödel’s incompleteness
theorems. Previously, Hilbert’s claim was “Anything speakable in Math-
ematics is either provable or disprovable”. This idea was called Hilbert’s
Finitistic Programme. However, this programme fails, if Gödel’s incom-
pleteness theorems are true.

17.1 Formal Number Theory

Formal number theoryN has 1 constant symbol ‘o’ and a 1-place function symbol
‘′’. So, the notations are o′, o′′, · · · .
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17.1.1 Symbolizing

Informally, we know o′ as 1. We symbolize it as 1. So, the numerals of N are

o

o′ : 1

o′′ : 2

...

Let φ be a formula with free variables x1, x2, · · · xn, that is, φ(x1, x2, · · ·xn).
Substituting with numerals we get, φ(a1, a2, · · · an), which is another formula
with no free variables.

17.1.2 Representing Predicates

In informal number theory/system, predicates are used for representing rela-
tions. Let P be an n-place relation of informal number theory, such as ≤ (a
2-place relation). However, in formal number theory, we do not have any predi-
cate symbol except ‘=’. Therefore, to represent a predicate symbol or relation of
informal number system, we need a formula φ with n number of free variables.
Note that, any formula with a free variable is a property.

Definition 52 The relation P of an informal number theory is said to be
“expressible” in N , if and only if, there is a formula φ, such that –
if P(a1, a2, · · · an) holds, then `N φ(a1, a2, · · · an), otherwise, `∼ φ(a1, a2, · · · an).

In informal number system, P(a1, a2, · · · an) is either true or false. If it is true,
then φ(a1, a2, · · · an) is derivable (or a theorem). If P(a1, a2, · · · an) does not
hold, then negation of φ(a1, a2, · · · an) is derivable, where a1 is the corresponding
formal linguistic symbol of a1. It can be noted that, some realtions of informal
number system can not be expressible in formal number system.

Example 35 Take the binary relation ‘≤’. So, we need a formula in N with
two free variables. Let this formula be

φ(x, y) ≡ ∃z(x+ z = y)

As, z is bound here, so, φ is a formula having two free variables.

Claim: The predicate relation ≤ is expressible by φ(x, y). that is,

`N ∃z(2 + z = 5) [That is, this theorem is provable]
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and `N∼ ∃z(5 + z = 2)

Example 36 Relation “ is even”. This is an one-place predicate and is a subset
relation in informal number theory (see Figure 17.1).

Set of Numbers

Numbers under ‘is even’ relation

Figure 17.1: ‘is even’ relation in Number theory

We need a formula with 1 free variable, like

∃z(x = 2.z)

Here 2 is the constant corresponding the informal number theory symbol 2 and
z is bound in the formula; so, the free variable is x.

Note: In informal number system, a relation R ⊆ Nk. So, for a 1-ary relation
R ⊆ N. So, 1-ary relation is subset relation. In mathematical logic, 0-ary
relation depicts to the constants, that is the objects of the domain.

Peano’s notion: Predicate symbol =, function symbols +, . and constant ‘o’
are sufficient to express all relations of number theory.

17.2 Gödel Numbering:

This is a method that assigns an unique actual number (in informal number
theory) to each symbol of the alphabet, each well formed formula and each
sequence of well formed formulas.

Also, this scheme ensures that, given any number, it will be possible to decide–

1. whether it is a Gödel number or not,
2. if it is so, what is the corresponding syntactic entity [that is, alphabet

symbol, wff or strings of symbols]

17.2.1 Outline of Method:

Step 1: • To each symbol, assign odd numbers (from the beginning), like - 1, 3, 5 · · ·
etc.
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[Note that, as number of symbols in alphabet is finite, we need only
finitely many odd numbers from the beginning.] We denote, by g(�),
the number corresponding to the symbol �.
• We need a sequencing of the symbols in the alphabet to do the num-
bering.
For example, see Figure 17.2. Note that, the symbols x and | can
construct infinitely many variables.

∼,→, (, ),+, .,=,′ , x, |, o,∃
1 3 5 7 9 11 13 15 17 19 21 23Numbering :

Symbols :

Figure 17.2: One arbitrary numbering of symbols in Number theory

Step 2: A formula is a finite sequence of symbols. To each formula S = s1s2s3 · · · sk,
where si is any symbol, assign

2g(s1).3g(s2). · · · .pg(sk)k

where pk is the kth prime from the beginning. This is denoted by g(S).

Example 37 S = ∃x1(x2 = 2.x1). This formula can be rewritten as

∃x|(x|| = o′′.x|)

So, g(S) = 223.317.519.75.1117.1319.1719.1913.2321.2915.3115.3711.4117.4319.477

Note: The concept of a number corresponding to a formula is so unique a
phenomenon that, nothing ever happened in the history parallel to this!

Step 3: To each sequence of wffs S1, S2, · · · , Sn, assign the number

2g(S1).3g(S2). · · · .pg(Sn)
n

Note: If two sequences are not same, then there exists at least one place,
where the numbering will be different because of the different symbol used.
So, it is not possible to assign two different formulas the same Gödel num-
ber.

17.2.2 Finding the syntactic entity of a Gödel number:

Before giving the procedure to find the syntactic entity corresponding to a Gödel
number, one needs to consider the assumption, the following fundamental theo-
rems:
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Theorem 12 : Any positive whole number n can be expressed/factorized as
powers of primes. This is called the fundamental theorem of Arithmetic.

Theorem 13 : There are infinitely many primes. This is a fundamental
theorem of intuitive number theory.

Proof for Theorem 13 is given by Euclid. These theorems are used implicitly.

Note that, the Gödel number of formulae and sequences are even numbers,
because, in each case, the first prime used is 2. So, given a number n, we need
to check the following:

• If n is odd, check the (finitely many) symbols of alphabet. If no match is
found, n is not a Gödel number.
• If n is even, check if the number can be factorized in terms of successive
primes or not. If not, n is not a Gödel number.
Otherwise, say, the number is factorized as 2a.3b.5c. · · ·
– If either of a, b, c, · · · is even, then the numbering is not of a formula.

If all are odd, check for the corresponding strings. However, even valid
string in the above sense may not always give wffs. For example,
23.31.513 corresponds to →∼= (see Figure 17.2), which is not a wff.
But, whether it is a wff or not, is decidable.

– If a, b, c are all even, that is like 22n1 .32n2 .52n3 , then, it can be the
numbering of a sequence of sequences.

For example, 10 is not a Gödel number, because– (i) it is not odd, so not a
symbol, (ii) 10 = 21.51, and 2, 5 are not successive primes.

17.2.3 Further Discussion:

Reason for Formalized Number System:

1. Even whole numbers of intuitive/informal number theory need to be for-
malized.

2. There also exists some theorems which need to be formalized, like a state-
ment – ‘There exists infinitely many primes’.

Some other points:

1. N is the object language. Target is to translate a meta-linguistic statement
into the statement of the object language, ie, a formula of N .

2. Any expressible relation of meta language is first translated into an equiva-
lent relation of informal number theory; then it is translated into a formula
of N (if it is expressible).
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3. Greek ‘Liar’s Paradox’ is an example of self-reference. E.g. - “I lie”. In
some sense, this can be considered as a predecessor to Gödel’s thought.

4. Let a formula have a proof. This means, a formula, which is a sequence of
symbols, has a Gödel number (a) associated with it and similarly, a proof,
which is a sequence of sequences, also has a Gödel number (b) for it. So, a
number (b) is the proof of another number (a).

Therefore, we can define a binary relation between numbers. This relation
between numbers may be called proof relation/derivability relation.

5. Each proof has a unique Gödel number associated with it. For example,

α α′

α→ β α′ → β′

MP β β′

the Gödel numbers for these two proofs are different if α, α′, β, β′ are dif-
ferent.

6. A number n can be provable by another number m, if and only if, there
exists a sequence of sequences S1, S2, S3, · · ·Sk which represents the Gödel
number m and n represents Sk.

7. A number is called expressive, if there is a formula which represents n in
N .

8. Gödel will translate the sentence ‘N is inconsistent’ within N by using
Gödel numbers.



Chapter 18

Gödel’s Incompleteness Theorem:
continued
Class 18: Dated 02 - March - 2017

Recall, N is the formal system of natural numbers and N is the set of actual
numbers. 1, 2, 3, · · · ∈ N and o, 1, 2, · · · are symbols belonging to N .

Definition 53 ω-consistency:

N is ω-consistent if and only if for every wff φ(x) with exactly one free variable
x, `N φ(n) for every n implies 0N ¬∀xφ(x) i.e. 0N ∃x¬φ(x).

Here, by replacing x with the number n, the formula is no longer with free
variable. Like, x < 2 is converted to 1 < 2, which is closed.

Note:

1. If we knew N to be consistent, then `N φ(n) for every n, would have implied
`N ∀xφ(x) and 0N ¬∀xφ(x). But we do not know about the consistency of N ,
so, it is necessary to assume 0N ¬∀xφ(x). [Recall, consistency: `N φ⇒0N ¬φ,
for all φ.]

2. `N φ means N `Ax φ (syntactic), where Ax is the set of axioms of formal
number system N .

Theorem 14 : [From classical logic:] Γ `Ax φ,¬φ, if and only if for all well
formed formula ψ, Γ ` ψ.

The part ‘Γ `Ax φ,¬φ’ is called negation inconsistency and ‘for all well formed
formula ψ, Γ ` ψ’ is called explosiveness or absolute inconsistency. This theorem
states that, if Γ is inconsistent, then everything follows from Γ. This comes from
the theorem,

`Ax φ→ (¬φ→ ψ) .
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In classical logic, negation inconsistency is equivalent to absolute inconsistency.
So,

Γ is consistent, if and only if, Γ 0 ψ, for some ψ.

Lemma 1 If N is ω-consistent, then N is consistent.

Proof : Let N be ω-consistent. Take a well-formed formula φ(x) with 1 free
variable x. Two possibilities are there –

1. `N φ(n), for all n.

2. 0N φ(n), for some n.

For Case 1, 0N ¬∀xφ(x) because of ω-consistency; for Case 2, 0N φ(n). So,
in either case, we have at least a formula which does not follow from N . Hence,
N is consistent. �
Note: This style of proving consistency is from classical logic, which is against

common sense. Alternative logic is para-consistency popularized by Brazilian
mathematician Newton da Costa.

Also note that, if P → Q, then it means, Q is more general, P ⊆ Q.

P

Q

Figure 18.1: Sets of P → Q

So, consistency is a more general notion than ω-consistency.

18.1 1st Incompleteness Theorem:

Theorem 15 : [1st Incompleteness Theorem:] If N is ω-consistent, then there
is a well formed formula S, such that 0N S, 0N ¬S.

Hilbert’s idea was that, given any mathematical formula it is derivable or its
negation is derivable.

Definition 54 Let G be a 2-place binary relation in N defined as following:

G (a, b) holds if and only if ‘a’ is the Gödel number of a wff P (x) with exactly
one free variable x and b is the Gödel number of one of the proofs in N of P (a).
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a, b

i

N

G (a, b)

P (a) must be a theorem with at least one proof in N . P (a) is replacement of
x with corresponding Gödel number of a, where a is the Gödel number of P (x).

Claim: G is expressible in N . [No proof]

Expressibility is expressing a statement outside of a system by a formula inside
that system. Example of expressibility: x < y can be expressed as ∃z(x + z =

y, z 6= 0).

18.1.1 Main proof of 1st incompleteness theorem

Let G(x, y) be the formula that expresses G . Let us take the formula

∀y¬G(x, y) ≡ P (x)

Let i be the Gödel number of P (x), where i ∈ N and i ∈ N . Take,

P (i) ≡ ∀y¬G(i, y)

We take P (i) as S. We shall prove:

1. If N is consistent, then 0N S.

2. If N is ω-consistent, then 0N ¬S

• Proof of (1):
Assumption, N is consistent. Now, if possible, let `N S, that is,

`N ∀y¬G(i, y) · · · (A)

So, it has proof(s). Take a proof of this wff. Let, j be the Gödel number of this
proof. So, (i, j) ∈ G . Since, G is expressible,

`N G(i, j) · · · (B)

However, from (A), using rule Spec., we get

`N ¬G(i, j) · · · (C)
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This (C) along with (B) contradicts our assumption of consistency of N . So,
0N S.

Note: If a property φ holds for all x i.e. ∀xφx, φ(t/x). So, ∀xφx → φ(t/x)

holds. This is the specialization rule in predicate logic.

• Proof of (2):
Assumption, N is ω-consistent. If possible, let `N ¬S, that is

`N ¬∀y¬G(i, y) · · · (A′)

Since, N is ω-consistent, so N is also consistent. So, 0N S. That means, no
number n is there. which could be the Gödel number of a proof of S. So,
(G)(i, n) does not hold for n. Therefore, by expressibility

`N ¬G(i, n)

Now, ¬G(i, y) is a wff with exactly one free variable y. Therefore, by ω-
consistency,

0N ¬∀y¬G(i, y) · · · (B′)

Note that, here (A′) and (B′) are meta-statements about two facts which con-
tradicts. So, (A′) and (B′) cannot be together. Hence, 0N ¬S.

So, from 1 and 2, we can say that, if N is ω-consistent, then there is a wff S,
such that, 0N S and 0N ¬S.

18.2 2nd Incompleteness Theorem:

This is the main incompleteness theorem. This theorem is due to Gödel and
Rosser.

Theorem 16 : [Gödel and Rosser Theorem:] If N is consistent, then there is
a well formed formula R, such that 0N R, 0N ¬R.

18.2.1 The formula R:

Definition 55 Define another binary relation H in N as following:

H (a, b) holds if and only if,‘ a’ is the Gödel number of a formula P (x), ‘b’ is
the Gödel number of a proof of ¬P (a).
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N

G (a, b)

H

...

a, b

H is expressible in N , say by H(x, y). Let a formula

φ(x) ≡ ∀y(G(x, y)→ ∃z(z ≤ y ∧H(x, z))

Note that, x is the only free variable and both y and z are bound by the universal
operators ∀ and ∃ respectively. Now, let j be the Gödel number of φ(x). Take,

φ(j) ≡ ∀y(G(j, y)→ ∃z(z ≤ y ∧H(j, z))

This is our R to prove this Theorem 16.

Note: Rosser sentence R roughly says that, if a statement is provable in N , then
its negation is already provable. That is, if there is a proof of R with a Gödel
number n, then there is a proof of ¬R with another Gödel number.

18.3 3rd Incompleteness Theorem:

Informally, this theorem states that, if N is consistent, then this fact cannot be
proved in N .

Here, N is the formal system with formula, axioms etc. Now, the statement
‘N is consistent’ is a meta-statement, not a wff of N . So, we need to express
it by some wff of N (see Figure 18.2). For this, we first define the following
relation –

...

...

L(x, y, z)

N

N is consistent

Figure 18.2: The problem of 3rd Incompleteness Theorem

Definition 56 L is a 3-place relation defined in N as follows:
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L (a, b, c) holds if and only if, ‘a’ is the Gödel number of a formula φ, ‘b’ is
the Gödel number of a proof of φ and ‘c’ is the Gödel number of a proof of ¬φ.

L is expressible in N by L(x, y, z). Note that, defining a relation does not
necessarily means that it has to hold.

N

...

a, b, c

L

Now, we can get a well formed formula

¬∃x∃y∃zL(x, y, z) · · · CONS

which stands for the meta-statement ‘N is consistent ’.

Note: The wff ∃x∃y∃zL(x, y, z) means, there exists a formula φ, for which
proofs of both φ and ¬φ are present in N ; so, N is inconsistent. Therefore,
¬∃x∃y∃zL(x, y, z) means, N is consistent.

Theorem 17 : [Statement of 3rd Incompleteness Theorem:]

If N is consistent, then 0N CONS.

Symbolically, it is the last nail to Hilbert’s program!!

Note: There has been many researches on avoiding this incompleteness issue
from N , such as –

1. Increasing or extending the axiom set to prove the completeness in the
extended axiom set. But, it is found that, this concept will not work as
long as expressibility of N is included in the system.

2. Selecting a small part of the axioms of N to avoid this scenario.



Chapter 19

Fuzzy Set Theory
May, 2018

The boundary of a set may not be sharp always. That is, it can not be always
crisp. This is the main motivation of studying Fuzzy set theory. Fuzzy set theory
deals with the scenarios where the boundary is not crisp.

For example, Tall men, Wise men etc. In case of Tall men, one does not know
how much tall. If you are given a number, by this number you can say whether
someone is tall or not. However, the number is not fixed. In case of the example
of tall men, atleast one gets a number. But when you are asked how much
wise a man can be, you do not even have any numerical value. So you have to
fix a range within which a person can be decided as tall or wise. That means,
the boundary is not sharp. These are not sets or a proper collection of objects
according to classical set theory.

According to classical set theory, set is a collection of well defined and distinct
objects. In case of fuzzy set theory, it does not fulfill the characteristics: well
defined and distinct. (Mainly well defined).

If there is a classical set A, then there is a characteristic function χA that
corresponds to A.

Similarly, a fuzzy subset A in the universe X is defined by the function µA :

X → [0, 1] and µA(x) is called the degree of membership of x in the fuzzy set
A. This idea can be extended to fuzzy relations.

19.1 Classical Conditional Proposition

I. If x is A then y is B. This conditional statement may be expressed by a relation
between variables x and y.

χB(y) = supx∈X min(χA(x), χR(x, y))
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A B

x y

Temp Pressure

X Y

where, R is a relation R ⊆ X × Y and χA, χB are the characteristic functions.

Generally, one can define a composition ◦ between a set A ⊆ X and a relation
R. This composition in the classical set theory is defined as follows.
A ◦R ⊆ Y such that y ∈ A ◦R if and only if there exists x ∈ A such that, xRy
holds. In other words, {y|xRy} is the image of A under R.

II. χR(x, y) = 1 iff either χA(x) = 0 or χB(y) = 1. So, I may be expressed as
the relation R in II. Thus, if you know A and R, you can obtain B. In other
words, given xinA and if x is A then y is B, i.e. (x, y) is R, we can determine B
as A ◦R.
This rule is extended in the case of fuzzy logic where A, B are fuzzy subsets

and R is a fuzzy relation. More specifically, Let us have the information,

If x is A A, B are fuzzy subsets
If x is A then y is B

Then we can write,
x is A
(x, y) is R where R(x, y) = A(x)→ B(y) for some implication operation.
Then we conclude,
y is A ◦R.
It will turn out that, B = A ◦ R. Thus we get an alternative version of M.P.
More generally we can have,

III.
If x is A then y is B
If x is A′

Then y is B′ ≡ A′ ◦R.

To note that R is the fuzzy implication relation defined by using the fuzzy sets
A and B but B′ is obtained by composing it with A′. III is called generalized
M.P.
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Note: Zadeh’s logic is semantic, the sup-min composition is the basic method of
calculation of the truth value. This is the universal core. However, the method-
ology is dependent on the value set [0, 1] and taking "min" for the conjunction
operator. The composition has been generalized by Peter Hajek and many oth-
ers.

This composition method may be applied to generalized hypothetical syllo-
gism by the following schema:

If x is A then y is B
If y is B then z is C

If x is A then z is C

A

B

C

X Y Z

x y z

In other words,
If < x, y > is A→ B ≡ R1 ⊆ A× Y A(x)→ B(y)

If < y, z > is B → C ≡ R2 ⊆ B × Z B(y)→ B(z)

then < x, z > is A→ C ≡ R3 ⊆ A× Y A(x)→ B(y)

Using the compositional method, one gets,
R3(x, z) = supy∈Y min(R1(x, y), R2(y, z))

i.e. R3 = R1 ◦R2.

It is surprising that, the relation R1 ◦R2 turns out to be A→ C

i.e. R1 ◦R2(x, z) = A(x)→ C(z) for all x, z.
Thus we can see the semantic counterpart of the rule HS. Any rule that involves
a sup-min composition is called a Compositional rule of inference. M.P and H.S
are such two rules.

The compositional rule may be applied more generally.
Let A1, A2, · · ·An be fuzzy subsets on X1, X2, · · ·Xn. Let there be a fuzzy subset
P on X1 ×X2 × · · ·Xk i.e.
P (x1, x2, · · · , xk) ∈ [0, 1] i.e. a k-ary relation. Let R be a fuzzy relation on
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X1, X2, · · ·Xn. Then,
P ◦ R = supx1,x2,··· ,xk min[P (x1, x2, · · · , xk), R(x1, x2, · · · , xk, yk+1, · · · , yn)]. P ◦
R is a fuzzy relation on Xk+1 × · · · ×Xn, where
P ◦ R(yk+1, · · · , yn) is given by the above expression. The process is first ex-
tending then projecting. For a fixed yk+1, · · · , yn, we first extend by all choices
of (x1, x2, · · · , xk).
Obtain a value from sup-min. Then project that value on (yk+1, · · · , yn).

Class notes on 17/05/2018

19.2 Fuzzy Implication Operator:

In classical logic,
α→ β ≡ ¬α ∨ β
≡ ¬α ∨ (α ∧ β)

≡ (¬α ∧ ¬β) ∨ β

If v(α) = a, v(β) = b, where a, b ∈ {0, 1}
then, v(¬α ∨ β) ≡ max((1− v(α)), v(β))

Again, we can write, v(¬α ∨ (α ∧ β)) ≡ max((1− v(α)),min(v(α), v(β))

These are equivalent in classical logic, but not in many valued logic. When
a, b ∈ [0, 1], then the values do not remain the same. That is, the functions
are not identical when the value set is, [0, 1]. So we have different implication
operators (refer to the book by Klir and Yuan, p. 309).

Let us define an implication:

a→ b = sup
x
{x|a ∧ x ≤ b} (19.1)

This implication is called residuation. If we keep the value set {0, 1}, then we
get exactly the same truth table as that of the classical logic. In other words,
we can write this implication by residuation. Eq. 19.1 is actually the deduction
theorem. Deduction theorem is the syntactic way of logic whereas, the semantic
part is the residuation expression.

Deduction Theorem:
Γ, α ` β ⇐⇒ Γ ` α→ β

γ, α ` β ⇐⇒ γ ` α→ β (special case)
This in turn implies that,
γ ∧ α ` β ⇐⇒ γ ` α→ β
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The corresponding algebraic expression to the above equation is,
x ∧ a ≤ b iff x ≤ a→ b.

‘ ≤′ corresponds to ‘ |=′ for fuzzy logic. In many valued logic, if α is desig-
nated by a value then β is also designated by a value. However, it is not that
necessarily that ‘v(α) ≤ v(β)′ for all valuations v. This is the difference between
many valued logic and fuzzy logic.

Exercise: Show the equivalence between,

i)a→ b = sup
x
{x|a ∧ x ≤ b} and ii)x ∧ a ≤ b iff x ≤ a→ b

Now, let Ã and B̃ be two fuzzy sets. If x is Ã then y is B̃. The semantic
translation is, R̃(x, y) = Ã(x)→ B̃(y). The generalized M.P rule,

If x is Ã then y is B̃
If x is Ã′

y is B̃′ = ?

Corresponding R̃ is a fuzzy relation. Therefore, y is B̃′ = Ã′◦R̃= supx min(Ã(x), R̃(x, y)).

X Y
~A ~B

Modus Tollens: In classical logic,

If α → β

If ¬β

¬α

In Fuzzy logic

If x is Ã then y is B̃ R̃(x, y)

y is not B̃ 1− B̃(y)

x is (1− B̃) ◦ R̃ supy min(1− B̃(y), R̃(x, y))
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(For Modus Tollens List, refer to the book by Klir and Yaun, P. 316)

Generalized Modus Tollens:
If x is Ã then yisB̃
y is B̃′

x is B̃′ ◦ R̃

Generalized HS:
If x is Ã then y is B̃ R̃1(x, y) ≡ Ã(x)→ B̃(y)

If x is B̃′ then z is C̃ R̃2(y, z) ≡ B̃′(y)→ c̃(z)

If x is Ã then z is ?
z is R1◦R2 i.e. supy min(R̃1(x, y), R̃2(y, z)). This is the relation between x and z.

Multiconditional Approximate Reasoning:

If x is Ã1 then y is B̃1 : R̃1

If x is Ã2 then y is B̃2 : R̃2

·
·
·

If x is Ãn then y is B̃n : R̃n

x is Ã
y is ? (Ã ◦ R̃)

One of the methods to solve this is, R̃ = R̃1 ∧ R̃2 ∧ · · · ∧ R̃n. Hence, R̃(x, y) =

min(R̃1(x, y), R̃2(x, y), · · · , R̃n(x, y)). This is one of the methods that gives good
results sometimes. The application is washing machine where fuzzy logic con-
troller is used.

19.3 Semantic Notion of Graded Consequence

We define in many valued context, X |= α (Semantic Consequence). α follows
from X to some degree. We shall define this motion. We shall write,
gr(X |= α) ∈ [0, 1]. This is the generalization of classical semantic consequence
relation. In classical case, gr(X |= α) ∈ {0, 1} means, for all valuations vi, if
every member of X is 1, then α also gets 1 under vi.
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That is, If X ⊆ vi, then α ∈ vi.
X |= α ≡ ∀vi(X ⊆ vi → α ∈ vi).

The changes made in the fuzzy case are,
1. Consider [0, 1] instead of {0, 1} i.e. F

vi−→ [0, 1]

2. Take subcollection of vi

Here for further generalization, we are taking a subcollection of all valuations
{vi}. Instead of writing α ∈ vi, we can write, vi(α). Again, we can write X ⊆ vi
as ∀x(x ∈ X → x ∈ vi) and ∀i∈Ivi, can be used as inf .

I

{vi}

All vi

So, the formula becomes,

∀i∈Ivi(∀x∈Fx(x ∈ X → vi(x))→ vi(α)).

i.e.
α ≡ inf

i∈I
( inf
x∈F

(X(x)→ vi(x))→ vi(α)) = gr(X |= α).

This is the algebraic expression of the sentence and gr(X |= α) is the semantic
graded of consequence of α from X. This expression gives a number in [0, 1].
in gr(X |= α) is a measure of the strength in which α semantically follows from
the premise set X in the context when the sentences (wffs) are fuzzy i.e. many
valued.
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